

<u>Developer Manual</u> TMPA900 CPU Board

2010 GLYN GmbH & Co. KG

All rights reserved. No part of this documentation may be reproduced or, with the use of electronic systems, edited copied or transmitted, in any form (print, photocopy, microfilm or another procedure) without the express authority of the GLYN GmbH & Co. KG, D-65510 Idstein.

The GLYN GmbH & Co. KG, D-65510 Idstein does not accept liability or provide any guarantee with respect to the contents of this documentation. The GLYN GmbH & Co. KG, D-65510 Idstein retains the right of revising this work. All programs and descriptions have been created to the best of our knowledge and tested with great care. However, errors cannot be entirely excluded. For this reason, the GLYN GmbH & Co. KG does not accept liability for possible errors and consequential damage resulting from the provision, performance or use of this material.

Table of Contents

1.0 Revision List	4
1.1 Contacts	4
2.0.0	_
2.0 Summary	5
2.1 Product Information TMPA900-CPU BOARD	
2.2 Energy Consumption at 3.3V (preliminary values)	
2.3 Block Diagram	6
2.4 TMPA900 CPU Board Reference Circuitry	
2.5 Glyn's Graphic Base Board	
2.5.1 Glyn's Graphic Base Board Connectors	
2.6 Instructions for use	11
3.0 Operational Description	12
3.1 CPU Core	
3.2 Memory – Architecture	
3.2.1 Nand Flash Memory – Unique Characteristics	
3.3 TMPA900CMXBG Block Diagram with Multilayer AHB	
3.4 Power Supply	
3.5 RESET	
3.6 External power source control output	
3.7 Ethernet - Network Controller	
3.8 UARTs	
3.9 USB 2.0 - Device	
3.10 USB 2.0 - HOST	
3.11 I2C	
3.12 SPI (SSP)	
3.13 I2S (Inter-IC Sound)	
3.14 PWM (Pulse Width Modulation) / 16bit-Timers	
3.15 JTAG	
3.16 Keys / Keyboard	
3.17 Analog/Digital Converter	
3.18 Touch Screen Interface (TSI)	
3.20 Glyn Graphic Base Board & Glyn TFT Family Concept	
3.21 SD Host Controller	
3.22 CMOS Camera Interface	
3.23 Melody/Alarm Generator	
3.24 Low Frequency Clock Output	37
4.0 Pin Allocation SODIMM 144 Connector	38
5.0 Software Components	44
5.1 Basics - Data Transfer to TMPA900 CPU Board	44
5.1.1 ELDIO Download Wizard	
5.1.2 Basics – Installing J-Link Lite	
5.1.3 Basics - Installing a TFTP Server	

5.1.4 Basics - Working completely under Linux	46
5.2 u-boot	
5.2.1 The Boot Process	
5.2.2 Flashing the u-boot	49
5.2.2.1 Flashing the u-boot over JTAG	
5.2.2.2 Update the u-boot via network (handle with care)	50
5.2.2.3 U-boot - Environment Setup	
5.2.2.4 IP and MAC Address Setup	51
5.2.2.5 Configuration of the Display Parameters	52
5.2.2.6 Configuration of the File System Type	
5.2.2.7 Splash Screen Support	
5.2.2.8 Erase u-boot Environment.	
5.2.2.9 u-boot - NFS Server Setup	
5.2.2.10 More u-boot commands	
5.2.2.11 What to do if the boot loader has been flashed incorrectly	
5.3 Standard Application (IAR Compiler)	
5.3.1 Debugging the Application (IAR Compiler)	
5.3.2 Make a Release for Flash (IAR Compiler)	
5.3.3 Flashing the Application (No Linux)	
5.3.4 Getting Started with SEGGER Evaluation Software and IAR	
6.0 Linux for TMPA900 CPU board	61
6.1 Major Components of a Linux System	
6.2 Flashing the Linux Application	
6.3 Flash Layout TMPA900-CPU-BOARD	63
6.4 Installation Linux Tool chain TMPA900 CPU board	64
6.5 Linux Kernel Build	
6.5.1 Linux Kernel Source Tree	
6.5.2 Linux Kernel Configuration	
6.5.3 Compiling the Linux Kernel	
6.5.4 Installing the Linux Kernel	
6.6 Linux File System	
6.7 Small C-Examples under Linux	
6.7.1 Linux "Hello World" Example	
6.7.2 IO-Toggle – Example for an easy accesses to the peripherals	
6.8 µCross – Linux Tool Package	
o.o poroco Emax room adhago	, ,
7.0 Installing the Display with the Glyn Graphic Base Board	77
7.1 Other Resolutions/Other Timings – Calculation of the Display Settings	
7.1 Other Recording Other Thinings Calculation of the Dioplay Collings	7 0
8.0 Mechanical Specifications (Formating)	79
8.1 Soldering the TMPA900-CPU-Board – No Connector	80
o. I coldering the Tivil 7,000 of a Board Two confidence	00
Appendix A: Available u-boot Commands	81
Appendix B: Ordering Information	
Appendix C: KC Labs Public Git Server	03 1/2
Appendix D: Literature and References	
Appendix E: CD file directory tree	
Appendix F: Contact Information	وں مم
Appoint 1. Contact information	30

1.0 Revision List

V0.1	30.12.2009	CTE/OLE	Document compilation
V0.2	13.01.2010	CTE/OLE	Revision Pin – Allocation
V0.3	18.02.2010	OLE	Revision NAND FLASH
V0.4	07.04.2010	OLE	Manual for flashing the u-boot
V0.5	08.04.2010	OLE	Manual for flashing the application
V1.0	09.04.2010	CTE / HFR	Proof-reading
V1.1	14.04.2010	OLE	Bootloader Correction
V1.2	21.04.2010	OLE	Correction Installation Linux Image
V1.3	18.05.2010	OLE	Corrections
V1.4	21.06.2010	CTE	New chapters 5.0, 6.5 and 7.1
V1.5	05.08.2010	CTE	Completely revised manual
V1.6	18.05.2010	CTE	New ELDIO Download Wizard
V1.7	26.01.2011	CTE	Some Corrections, new chap. 6.7.2

1.1 Contacts

Christoph Tenbergen	christoph.tenbergen@glyn.de	+49 2157 127-227
Dominik Peuker	dominik.peuker@glyn.de	+49 6126 590-270

2.0 Summary

This report contains all important technical information regarding the TMPA900-CPU-board SODIMM module. Detailed information about the implemented parts can be found on the appropriate data sheets and a list with references is at the end of the document.

2.1 Product Information TMPA900-CPU BOARD

Glyn's TMPA900-CPU board is a CPU module by Glyn GmbH & Co KG with Toshiba's TMPA900CMXBG ARM9 microcontroller. The integrated TFT controller enables RGB display driving with a resolution of 800x480 with integrated hardware acceleration. Dispensing with this acceleration enables up to 1024x1024. The module is a highly efficient and easy-to-integrate processor platform with graphic and video capability. The board is designed for mounting on a SODIMM socket which is also available from us – it is a SODIMM 144-pin socket used in the PC field. Additionally, it is also possible to dispense with the socket and solder the module for larger series sizes (further information available).

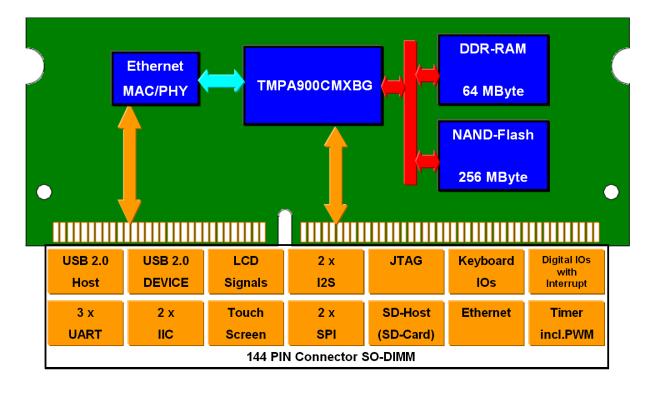
System On-Module

- Processor TMPA900CMXBG, 200 MHz
- RAM 64 MB DDRRAM
- ROM 256 MB NAND Flash
- Power supply single 3.0V to 3.6V
- Size SO-DIMM 144
- Temp.-range -20°C..85°C

Key Features

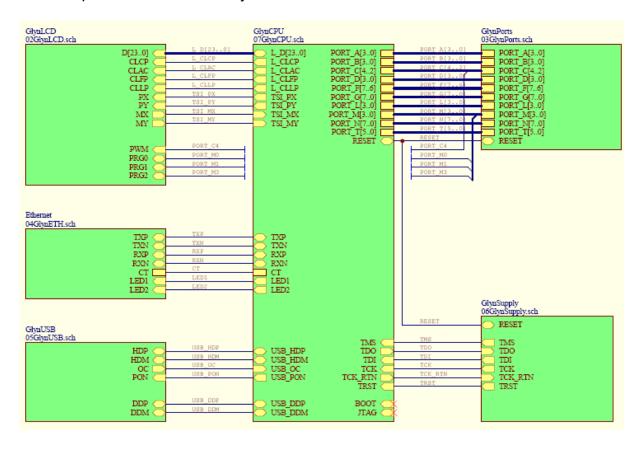
- 10/100Mbps Ethernet (MAC+PHY)
- High-speed USB 2.0 Device (480Mbps)
- Full-speed USB Host 2.0 (12Mbps)
- LCD controller
- CMOS camera interface
- Interfaces: UART, SD-CARD, I2C, PWM, Keypad, Digital Audio (I2S), 4/5 wire touch screen

The TMPA900-CPU-Board what comes with the Starterkit is pre-programmed with the UBoot and a Splashscreen.


There is no Linux-Kernel or other application programmed!

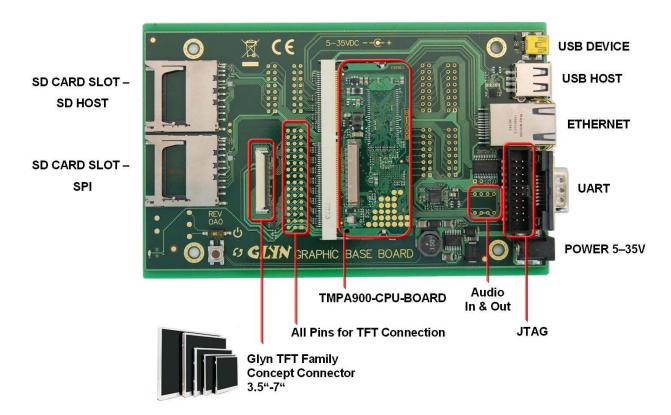
2.2 Energy Consumption at 3.3V (preliminary values)

	mit et	hern		ohne Ethernet (Initialisierung nicht ∨ollständig)		
f (Fc = 200 Mhz)	I/mA		P/mW	I/mA P/mW		P/mW
fc		328	1082	9 (3)	174	574
fc/2		267	881	8	137	452
fc/4 fc/8		239	789	- 3	119	393
fc/8		225	743	- 3	110	363
nach reset (halt)		190	627		75	248


2.3 Block Diagram

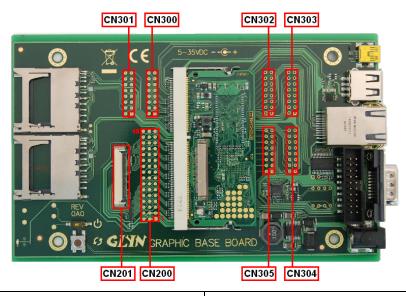
2.4 TMPA900 CPU Board Reference Circuitry

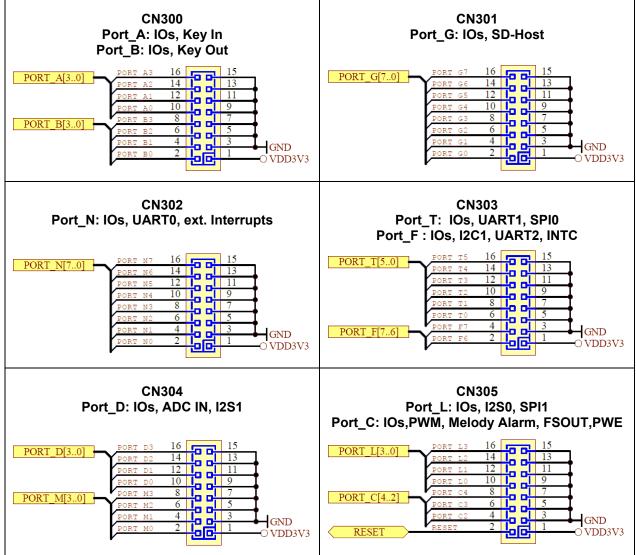
The complete reference circuitry can be found on the CD.

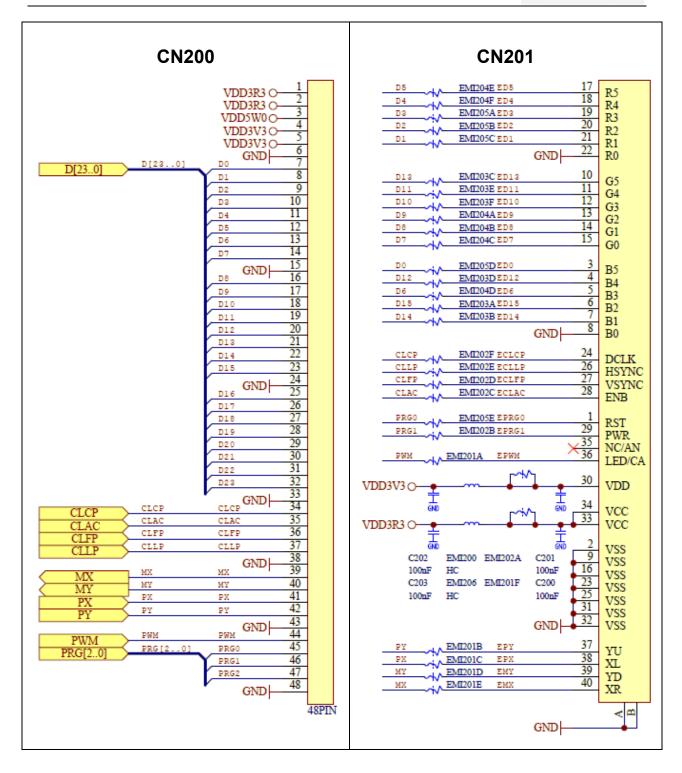


2.5 Glyn's Graphic Base Board

Glyn's Graphic Base Board is a platform in order to use the TMPA900-CPU board for a development. At the same time, it is also the reference design for including a TMPA900-CPU board. The plans and BOM list can be found on the CD in the file "Circuit_Diagramm". Should layout data be required, this can also be provided against an NDA.


Features


- 144 PIN SODIMM connector
- Ethernet connector
- USB host connector
- USB device connector
- RS232
- WM8983 Audio Codec by Wolfson
- SD card sockets (SD-Host controller and via SPI)
- Glyn TFT concept connector für 3.5" 7" TFTs
- JTAG interface
- 100mm x 160mm
- Single power supply 5-35V



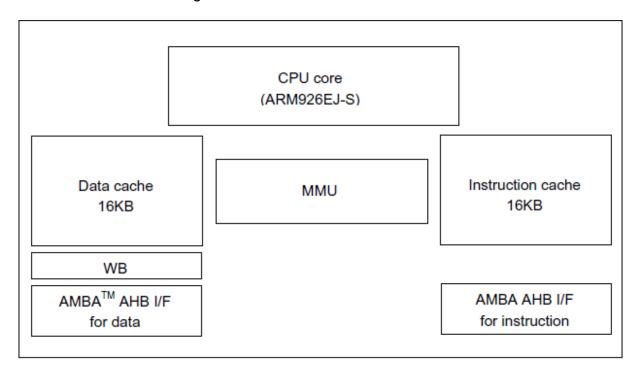
2.5.1 Glyn's Graphic Base Board Connectors

2.6 Instructions for use

The standard measures of precaution regarding touching and operating circuitry in low voltage ranges apply. Electrostatic discharging which may damage parts is to be avoided.

The board may be plugged in or out only when the supply voltage is switched off.

The parts used on the TMPA900 CPU board are specified for use between -20 and +85 Grad Celsius. The TMPA900 CPU board requires a DC voltage of $3.3V \pm 0.2V$.



3.0 Operational Description

This chapter provides a brief description of the module and its interfaces.

3.1 CPU Core

Note that this document provides only an overview of the CPU block. Please contact ARM Holdings for operation details and refer to the TMPA900CMXBG manual. The TMPA900CM has a built-in 32-bit RISC processor ARM926EJ-S manufactured by ARM. The schematic diagram of the ARM926EJ-S core is shown below.

The TMPA900CM does not feature the functions shown below.

- 1. Coprocessor I/F
- 2. Embedded ICE RT
- 3. TCM I/F
- 4. ETM9TM I/F

3.2 Memory – Architecture

The TMPA900 is characterised by a multilayer AHB bus. The advantage over conventional architectures is the higher internal data throughput. To expand on this concept, there are two memory controllers for the external flash and RAM. The first is responsible for communication with NORFLASH, SRAM or SDRAM and the second is responsible for communication with NORFLASH, SRAM und DDR SDRAM. The external memory chips are each directly connected to one of these controllers.

The CSs of the external NAND flash are connected to pin D7/D8 on the TMPA900. The CSs of the external SRAM/DDRRAM are connected to pin K12 on the TMPA900

The TMPA900 has two operating modes – the external memory mode and the internal boot ROM mode which are specified by the external mode pins AM0 and AM1. Pin AM0 is set to high. Pin AM1 is connected to the expansion connector and marked BOOT (PIN132).

AM1 HIGH BOOT (start from internal Boot ROM)

AM1 LOW Start from external bus/memory (16-bit Bus)

Due to the internal structure of NAND memories, it is not possible to run a program directly from this memory. In fact, the user program code has to be copied from the NAND memory to the external RAM before starting the program. Access to the NAND flash takes place in a multiplexed 8-Bit mode.

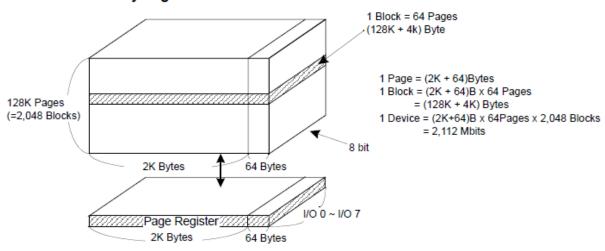
The process has not been disclosed in detail. Should the customer require more information, we can request personalised documentation at Toshiba. This is free of charge.

3.2.1 Nand Flash Memory - Unique Characteristics

- When it is erased, all bits are set to 1' (you will see 0xff on all bytes in a hexdump)
- You can change as many bits as you want to '0'
- You cannot set a bit back to '1' by using a regular write.
- You have to erase a whole erase block to do so
- The number of erase cycles per block is limited. Once you have reached the limit, some bits will not get back to 0xff. In the case of the in Samsung Flash K9F2G08 this is 100.000 guaranteed per-block erase cycles.

NAND page

A NAND page consists of a number of data bytes plus a number of out-of-band (OOB) bytes.


Only the data bytes are used for application data. The OOB bytes are used for

- Marking an erase block as bad (first or second page of erase block)
- Storing ECC (error correction codes)
- Storing file system specific information (JFFS2)

NAND erase block

An erase block consists of multiple pages. In K9F2G08 every erase block has 64 pages.

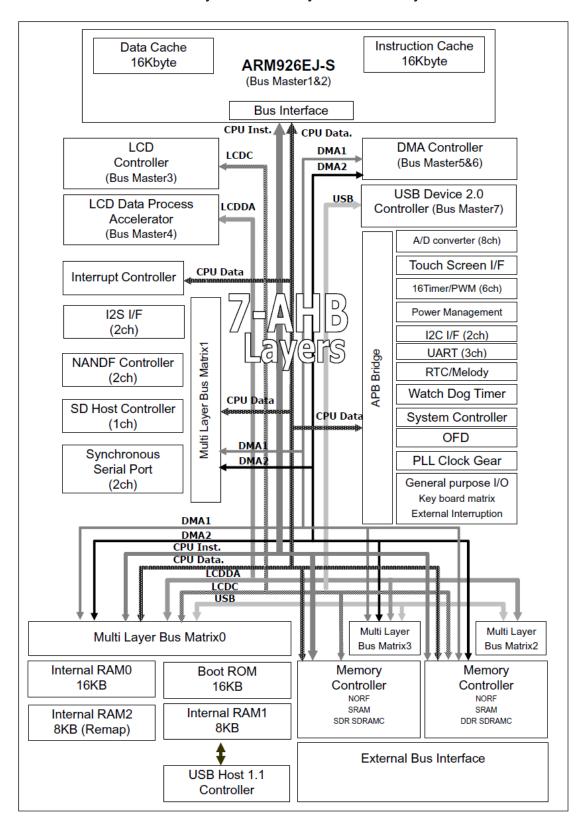
K9F2G08X0A Array Organization

Problem: Bad Blocks

NAND memory apparently gets shipped with blocks that are already bad. The vendor just marks those blocks as bad, thus resulting in higher yield and lower per-unit cost.

The flash contains four kinds of blocks (16kBytes):

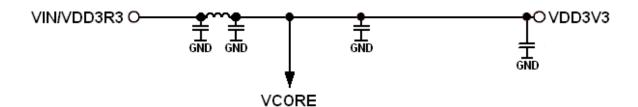
- Factory default bad blocks
 - Samsung marks the 6th OOB byte as non 0xFF in the first and/or second page in blocks that are bad
- Worn-out bad blocks
- Good blocks
- The first block. This block is guaranteed to not require error correction up to 1000 writes. This is needed as the initial boot code can't do ECC.


It is also guaranteed that a minimum of 2008 blocks (out of the total 2048) are good. This means up to 40 blocks (5.1MBytes) can be dead.

More about bad block handling in chapter 5.0 u-boot!

3.3 TMPA900CMXBG Block Diagram with Multilayer AHB

The TMP900CM uses a multilayer AHB bus system with 7 layers.



3.4 Power Supply

The parts used on the TMPA900 CPU board are specified for use between -20 and +85 Grad Celsius. The TMPA900 CPU board requires a DC voltage of $3.3V \pm 0.2V$.

The power is fed over the VDD3R3 pins. This power runs through some filters and is outputted over VDD3V3. External components which aren't supplied by the module should be supplied over VDD3V3.

The filters are switched between VIN/VDD3R3 and VDD3V3, so the voltage peak has the same effect on external components as on the module. The EMV critical part should be connected via the filters.

Power Supply Pins VDD3R3:

Signal	PIN	Input/Output	Function Remarks
VDD3R3	136	Input	DC IN complex 2.2V + 0.2V
VDD3R3	138	Input	DC-IN supply: 3.3V ± 0.2V
VDD3R3	140	Input	
VDD3R3	142	Input	

Power Output Pins VDD3V3:

Signal	PIN	Input/Output	Function Remarks
VDD3V3	3	Output	DO OUT VDD2D2 filessed
VDD3V3	4	Output	DC-OUT VDD3R3 filtered
VDD3V3	61	Output	
VDD3V3	62	Output	
VDD5W0	5	-	Not connected!

Ground Pins:

Signal	PIN	Input/Output	Function Remarks
GND	1		
GND	2		Ground
GND	11		
GND	12		
GND	21		
GND	22		
GND	31		
GND	32		
GND	41		
GND	42		
GND	51		
GND	52		
GND	63		
GND	64		
GND	73		
GND	74		
GND	83		
GND	84		
GND	93		
GND	94		
GND	103		
GND	104		
GND	113		
GND	114		
GND	123		
GND	124		
GND	133		
GND	134		
GND	143		
GND	144		

3.5 RESET

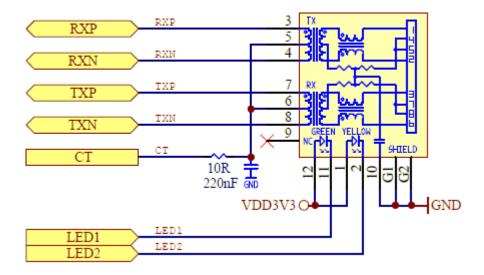
Before resetting the TMPA900CM, make sure that the power supply voltage is within the operating range, oscillation from the internal oscillator is stable at at least 20 system clock cycles (0.8 μ s @ X1 = 25 MHz), and the RESET input pin is pulled Low. When the TMPA900CM is reset, the PLL stops, the PLL output is unselected, and the clock gear is set to TOP (1/1).

The system clock therefore operates at 25 MHz (X1 = 25 MHz).

Signal	PIN	Input/Output	Function Remarks
RESET	112	Input	RESET

3.6 External power source control output

Signal	PIN	Input/Output	Function Remarks
PWE (PORT_C2)	110	Output	This pin controls ON/OFF of the external power source. The "H" level is output during regular operations, and the "L" level is output during standby mode.



3.7 Ethernet - Network Controller

There is an LAN9221i (Industrial Temperature Range) – Ethernet controller by SMSC integrated on the TMPA900-CPU board. This supports 10/100 MBit data communication. The Fifo – Select connection (Pin13) is connected to address A12 of the TMPA900. A 330Ohm series resistor has already been integrated for the network LEDs. Furthermore, the TXP, TXN, RXP and RXN are connected by a 490Ohm pull-up resistor. A MAC address has not been set; the firmware takes care of the assignment.

Signal	PIN	Input/Output	Function Remarks
LED1	6	Output	LED1
LED2	8	Output	LED2
CT	10	Output	AVDD Output to Ethernet Magnetics
RXP	14	Input	Receive Positive
RXN	16	Input	Receive Negative
TXP	18	Output	Transmit Positive
TXN	20	Output	Transmit Negative

Connection Example: RJ45 Female Connector on TMPA900-CPU-Board

3.8 UARTs

The TMPA900-CPU-Board contains three UART channels. The feature of each channel is shown below.

	UART 0	UART 1	UART 2			
Transmit FIFO	8-bit width / 16 location deep					
Receive FIFO	12-bit width /16location deep					
Transmit/Receive	DATA bits: 5,6,7,8bits can be select	cted				
data format	PARITY: use / no use					
	STOP bit:1bit / 2bits					
FIFO ON/OFF	ON (FIFO mode)/					
	OFF (characters mode)					
Interrupt	(1) Combined interrupt factors are of	output to interrupt cont	roller.			
	(2) The permission of each interrup					
baud rate generator	Generates a common transmit a	nd receive internal c	lock from the UART			
	internal reference clock input.					
	Supports baud rates of up to 6.15M					
DMA	Support	NO support	support			
IrDA 1.0 Function	(1) Max data rate:	N/A	N/A			
	115.2kbps(half-duplex)					
	(2) support low power mode					
Control pins	U0RXD	U1RXD	U2RXD			
	U0TXD	U1TXD	U2TXD			
	U0CTSn					
	U0CTSn (Clear To Send)					
	U0DCDn (Data Carrier Detect)					
	U0DSRn (Data Set Ready)					
	U0RIn (Ring Indicator)					
	U0RTSn(Request To Send)					
	U0DTRn (Data Terminal Ready)	110	N1/A			
Hardware flow	RTS support	NC	N/A			
control	CTS support					

UART0:

Signal	PIN	Input/Output	Function Remarks
U0RTSn (PORT_N7)	24	Output	Output modem control line RTD(Request To Send)
U0DTRn (PORT_N6)	26	Output	Output modem control line DTR (Data Terminal Ready)
U0RIn (PORT_N5)	28	Input	Modem status signal RI (Ring Indicator)
U0DSRIn (PORT_N4)	30	Input	Modem status signal DSR (Data Set Ready)
U0DCDn (PORT_N3)	34	Input	Modem status signal DCD (Data Carrier Detect)
U0CTSn (PORT_N2)	36	Input	UART0 data can be transmitted (Clear to send)
U0RXD (PORT_N1)	38	Input	UART0 receive data
U0TXD (PORT_N0)	40	Output	UART0 transmission data

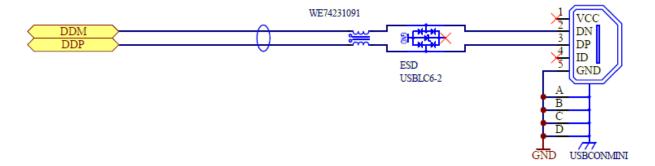
UART1:

Signal	PIN	Input/Output	Function Remarks
U1RXD (PORT_T5)	44	Input	UART1 receive data
U1TXD (PORT_T4)	46	Output	UART1 transmission data

UART2:

Signal	PIN	Input/Output	Function Remarks
U2RXD (PORT_F7)	58	Input	UART2 receive data
U2TXD (PORT_F6)	60	Output	UART2 transmission data

3.9 USB 2.0 - Device


Features:

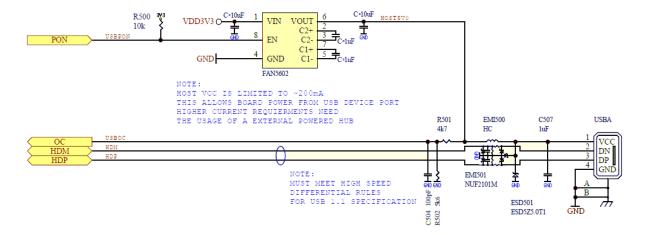
- Conforms with universal serial bus specification Rev. 2.0
- Supports both high-speed and full-speed (low-speed is not supported).
- Supports Chirp.
- USB protocol processing
- Detects SOF/USB_RESET/SUSPEND/RESUME.
- Generates and checks packet IDs.
- Generates and checks data synchronization bits (DATA0/DATA1/DATA2/MDATA).
- Checks CRC5, generates and checks CRC16.
- Supports PING.
- Supports 4 transfer modes (Control/Interrupt/Bulk/Isochronous).
- Supports 4 endpoints:
 - o Endpoint 0: Control 64 bytes × 1 FIFO
 - o Endpoint 1: Bulk (IN) 512 bytes × 2 FIFOs
 - o Endpoint 2: Bulk (OUT) 512 bytes × 2 FIFOs
 - Endpoint 3: Interrupt (IN) 64 bytes × 1 FIFO
- Supports dual packet mode (except for Endpoint 0).
- Interrupt source signal to interrupt controller: INTS[21]

Signal	PIN	Input/Output	Function Remarks
USB_DDP	17	Input/Output	USB Device pin (D+)
USB_DDM	19	Input/Output	USB Device pin (D-)

Connection Example: MINI USB on the TMPA900-CPU-Board

3.10 USB 2.0 - HOST

The USB host controller (USBHC) is compliant with USB specification revision 2.0 and the open HCl specification release 1.0a and supports USB transfers at 12 Mbps (full-speed). The USBHC is connected to the multi-layer bus system via on-chip SRAM.


Features:

- Supports full-speed (12 Mbps) USB devices. But doesn't supports low-speed (1.5Mbps)
- Supports control, bulk, interrupt and isochronous transfers.
- Contains two 16-byte FIFO buffers (IN and OUT) in the bus bridge logic for connecting with the CPU, allowing a maximum of 16-byte burst transfers.
- Supports data transfers between the FIFO buffers in the bus bridge logic and the on-chip SRAM.

Signal	PIN	Input/Output	Function Remarks
USB_OC	7	Input	Over current detect for USB host
USB_PON	9	Output	Power on enable for USB host
USB_HDP	13	Input/Output	USB host data (D+)
USB_HDM	15	Input/Output	USB host data (D-)

Connection Example: USB host type A on the TMPA900 CPU board

3.11 I2C

This module operates in I2C bus mode and is compliant with the typical I2C bus standard (Philips specifications).

Features:

- Contains two channels (ch0 and ch1).
- Allows selection between master and slave.
- Allows selection between transmission and reception.
- Supports multiple masters (arbitration, clock synchronization recognition).
- Supports standard mode and fast mode (fastest baud rate in master mode: 89.91 kHz andn357.14 kHz, respectively, at fPCLK = 100 MHz)
- Supports the addressing format of 7 bits only.
- Supports transfer data sizes of 1 to 8 bits.
- Provides one transfer (transmission or reception) complete interrupt (levelsensitive).
- Can enable or disable interrupts. (Interrupt source for I2C ch0: INTS[6], Interrupt source for I2C ch1: INTS[7])

I2C Channel 0:

Normally used for USB host

Signal	PIN	Input/Output	Function Remarks
I2C0CL (USB_OC)	7	Input/Output	I2C clock I/O
I2C0DA (USB_PON)	9	Input/Output	I2C data I/O

I2C Channel 1:

Signal	PIN	Input/Output	Function Remarks
I2C1CL (Port_F6)	60	Input/Output	I2C clock I/O
I2C1DA (Port_F7)	58	Input/Output	I2C data I/O

3.12 SPI (SSP)

Features:

- Contains two channels (ch0 and ch1).
- Communication protocol includes SPI: 3 types
- Master/ slave mode support
- Transmit FIFOs 16-bit wide, 8 locations deep
- Receive FIFOs 16-bit wide, 8 locations deep
- Transmit/Receive data size 4 to 16 bits
- Interrupt type:
 - o Transmits interrupt
 - o Receives interrupt
 - o Receives overrun interrupt
 - Timeout interrupt
- Baud rate master mode: fPCLK/2 (Max 20 Mbps)
- Slave mode: fPCLK/12 (Max 8.33 Mbps)
- DMA Support
- Internal loop back test mode available

SPI (SSP) Channel 0:

Signal	PIN	Input/Output	Function Remarks
SP0D	48	Input	Data input pin for SSP0
(Port_T3)			
SP0DO	50	Output	Data output pin for SSP0
(Port_T2)			
SP0CLK	54	Input/Output	Clock pin for SSP0
(Port_T1)			·
SP0FSS	56	Input/Output	FSS pin for SSP0
(Port_T0)			·

SPI (SSP) Channel 1:

Signal	PIN	Input/Output	Function Remarks
SP1DI (Port_L3)	96	Input	Data input pin for SSP1
SP1DO (Port_L2)	98	Output	Data output pin for SSP1
SP1CLK (Port_L1)	100	Input/Output	Clock pin for SSP1
SP1FSS (Port_L0)	102	Input/Output	FSS pin for SSP1

3.13 I2S (Inter-IC Sound)

The TMPA900CM contains a serial input/output circuit compliant with the I2S format. By connecting an external audio LSI, such as an AD converter or DA converter, the I2S interface can support the implementation of a digital audio system.

Features:

	Channel 0	Channel 1		
Transmit/Receive	Receive only	Transmit only		
Modes	Receive master mode	Transmit master mode		
	Receive slave mode	Transmit slave mode		
	Full-duple	x master mode		
	Full-duple	ex slave mode		
	Clock th	nrough mode		
Data formats	(1) I2S format-compliant			
	(2) Stereo/monaural			
	(3) MSB first/LSB first selectable			
	(4) Left-justified supported (synchronous to WS, no delay)			
FIFO buffer	2 × 8 words 2 × 8 words			
Data length	16 bits only 16 bits only			
Interrupts	FIFO overflow interrupt FIFO overflow interrup			
	FIFO underflow interrupt	FIFO underflow interrupt		

I2S Channel 0:

Signal	PIN	Input/Output	Function Remarks
I2S0MCLK (Port_L3)	96	Output	I2S0 master clock output for receive circuit
I2S0DATI (Port_L2)	98	Input	I2S0 receive serial data input
I2S0CLK (Port_L1)	100	Input/Output	I2S0 serial clock Input/output
I2S0WS (Port_L0)	102	Input/Output	I2S0 word select Input/output

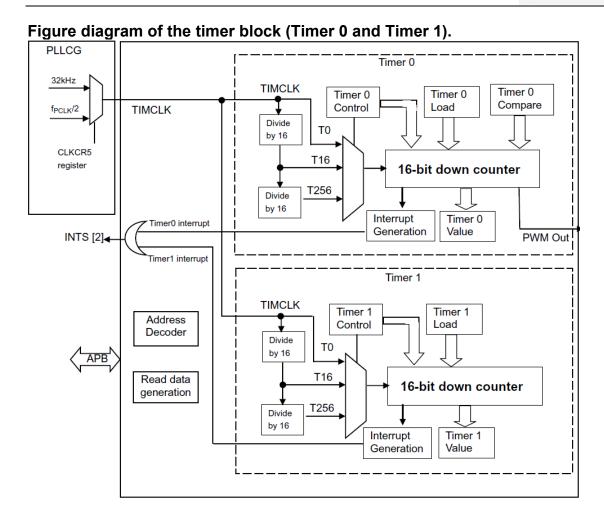
I2S Channel 1:

Signal	PIN	Input/Output	Function Remarks
I2S1MCLK	86	Output	I2S1 master clock output for receive circuit
(Port_M3)			
I2S2DATO	88	Output	I2S1 transmission serial data output
(Port_M2)			
I2S3CLK	90	Input/Output	I2S1 serial clock Input/output
(Port_M1)			
I2S4WS	92	Input/Output	I2S1 word select Input/output
(Port_M0)			·

3.14 PWM (Pulse Width Modulation) / 16bit-Timers

The TMPA900 CPU board contains six cannels of 16-bit timers. Two of them, timer 0 and timer 2 support PWM (Pulse Width Modulation) output.

- 1) Free-running mode
- 2) Periodic timer mode
- 3) PWM function support


The circuit consists of three blocks, each associated with two channels. Of the three blocks, block 1 and block 2 support PWM (Pulse Width Modulation) output.

	Block 1		Bloo	ck 2	Block 3	
	Timer0	Timer1	Timer2	Timer3	Timer4	Timer5
Free-Running	•	•	•	•	•	•
Periodic Timer	•	•	•	•	•	•
PWM	•	N/A	•	N/A	N/A	A
	PWM0OUT (Port_C3)	х	PWM2OUT (Port_C4)	х	х	х
Interrupt Source Signal	INTS[2]		INT	S[3]	INTS	5[4]

Signal	PIN	Input/Output	Function Remarks
PWM0OUT (Port_C3)	108	Output	Timer 0 PWM output port
PWM2OUT (Port_C4)	106	Output	Timer 2 PWM output port

Each timer block, containing two channels of timer circuits, comprises two programmable, 16-bit free-running decrement counters. The TIMCLK input is used for counter operation. This clock can be selected from the internal system clock divided by two (fPCLK/2) and fs (32.768 kHz).

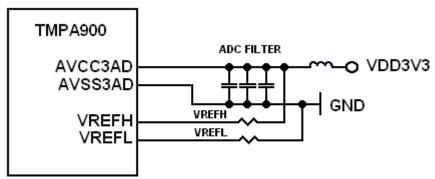
3.15 JTAG

The TMPA900CMXBG provides a boundary scan interface that is compatible with Joint Test Action Group (JTAG) specifications and uses the industrial standard JTAG protocol (IEEE Standard 1149.1•1990 < Includes IEEE Standard 1449.1a•1993 >).

Signal	PIN	Input/Output	Function Remarks
TDO	116	Output	Data output pin for JTAG
TCK RTN	118	Output	JTAG test feedback serial clock output
TCK	120	Input	Clock pin for JTAG
TMS	122	Input	Data for JTAG
TDI	126	Input	Data input pin for JTAG
TRST	128	Input	RESET pin for JTAG
JTAG	130	Input	Boundary scan switching pin, ICE/JTAG test select input (compatible with the Enable signal) -> 0: ICE 1: JTAG
BOOT	132	Input	AM1 Pin

3.16 Keys / Keyboard

Port A can be used not only as a general-purpose input pin with pull up, but also as a key input pin. By enabling interrupts, Port A is used as key input pins (KI3-KI0). Port A can be used without pull up.


Port B can be used not only as general-purpose output pins, but also as key output pins. By enabling open-drain output, Port B is used as key output (KO3-KO0).

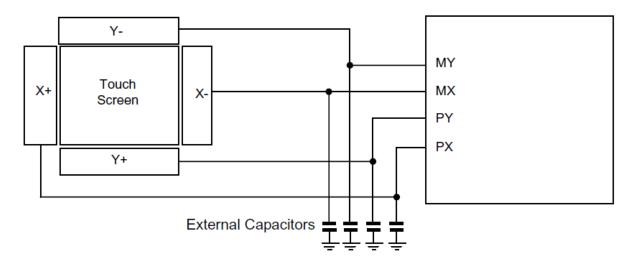
Signal	PIN	Input/Output	Function Remarks	
Port A0 (KI0)	29	Input	Port A0 to A2: Input ports	
Port A1 (KI1)	27	Input	Port A0 to A3: Input ports Key input KI0 to KI3: Pins for key-on wake up 0 to 3	
Port A2 (KI2)	25	Input	(with Schmitt input and pull-up resistor)	
Port A3 (KI3)	23	Input		
Port B0 (KO0)	33	Output	Port PO to P2: Output ports	
Port B1 (KO1)	35	Output	Port B0 to B3: Output ports Key output KO0 zp KO3: Key out pins 0 to 3	
Port B2 (KO2)	37	Output	(open-drain can be set)	
Port B3 (KO3)	39	Output		

3.17 Analog/Digital Converter

A 10-bit serial conversion analog/digital converter (AD converter) with eight channels of analog input is built-in. Four channels (AN4-AN7) are normally used for touch screen interface.

Power Supply of ADC:

Signal	PIN	Input/Output	Function Remarks
AN0	82	Input	
(Port_D0)			Port D0 to D3: Input ports
AN1	80	Input	Analog input AN0 to AN3: AD Converter Input Pins
(Port_D1)			
AN2	78	Input	
(Port_D2)			
AN3	76	Input	
(Port_D3)			


Pins normally used for Touch Screen Interface

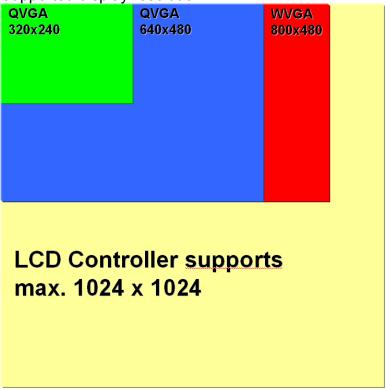
Signal	PIN	Input/Output	Function Remarks
AN7	65	Output	
(TSI_PY)			Port D4 to D7: Input ports
AN6	67	Output	Analog input AN4 to AN7: AD Converter Input Pins
(TSI_PX)			
AN5	69	Output	
(TSI_MY)			
AN4	71	Output	
(TSI_MX)			

3.18 Touch Screen Interface (TSI)

An interface for a 4-terminal resistor network touch screen is built-in. The TSI easily supports two procedures: touch detection and X/Y position measurement. Each procedure is performed.

TMPA900_CPU_BOARD

Signal	PIN	Input/Output	Function Remarks
TSI_PY (Port_D7/AN7)	65	Output	Y-plus: Y-connecting pin for touch panel
TSI_PX (Port_D6/AN6)	67	Output	X-plus: X-connecting pin for touch panel
TSI_MY (Port_D5/AN5)	69	Output	Y-minus: Y-connecting pin for touch panel
TSI_MX (Port_D4/AN4)	71	Output	X-minus: X-connecting pin for touch panel



3.19 LCD Controller (LCDC)

SUPPORTED DISPLAY COLORS & DISPLAY RESOLUTION Display colours: from 256 to 16 million:

Data bus width	RGB	Display colours
24 bit	R8:G8:B8	16 million
18 bit	R6:G6:B6	262 144
16 bit	R5:G6:B5	65 536
12 bit	R4:G4:B4	4 096
8 bit	R3:G3:B2	256

Supported display resolution:

Up to WVGA with LCD data process accelerator:

- Scaling function (expansion/reduction)
- Filter function (bi-cubic convolution)
- Image blending function (font blending)

Up to 1024 x 1024 without accelerator and limited colour depth.

LCD Interface Signals:

Signal	PIN	Input/Output	Function Remarks
L_CLLP	116	Output	Data output pin for JTAG
L_CLFP	118	Output	JTAG test feedback serial clock output
L_CLAC	120	Input	Clock pin for JTAG
L_CLCP	122	Input	Data for JTAG

Signal	PIN	Input/Output	Function Remarks
L_D0	141	Output	LCD data driver line
L_D1	139	Output	LCD data driver line
L_D2	137	Output	LCD data driver line
L_D3	135	Output	LCD data driver line
L_D4	131	Output	LCD data driver line
L_D5	129	Output	LCD data driver line
L_D6	127	Output	LCD data driver line
L_D7	125	Output	LCD data driver line
L_D8	121	Output	LCD data driver line
L_D9	119	Output	LCD data driver line
L_D10	117	Output	LCD data driver line
L_D11	115	Output	LCD data driver line
L_D12	111	Output	LCD data driver line
L_D13	109	Output	LCD data driver line
L_D14	107	Output	LCD data driver line
L_D15	105	Output	LCD data driver line
L_D16	101	Output	LCD data driver line
L_D17	99	Output	LCD data driver line
L_D18	97	Output	LCD data driver line
L_D19	95	Output	LCD data driver line
L_D20	91	Output	LCD data driver line
L_D21	89	Output	LCD data driver line
L_D22	87	Output	LCD data driver line
L_D23	85	Output	LCD data driver line

3.20 Glyn Graphic Base Board & Glyn TFT Family Concept

The Concept

Our objective was to offer a number of TFTs that . . .

- 1) are compatible with each other,
- 2) provide a modern interface and
- 3) have long-term availability.

In close collaboration with our partner EDT (Emerging Display Technologies), we have selected a number of TFTs that have been modified according to your needs. A PCB on the back of the display provides important functionalities as well as a common interface.

The family concept displays can be connected to the graphic base board (starter kit) directly. All display signals are lead through the SODIMM slot.

7.0" - 5.7" - 5.0" - 4.3" - 3.5"

Part number	Size	Resolution	Dimensions
G-ET0350G0DM6 (DH6)	3.5"	320 x 240	76.8 x 63.8 mm
G-ET0430G0DM6 (DH6)	4.3"	480 x 272	105.5 x 67.2 mm
G-ET0500G0DM6 (DH6)	5.0"	800 x 480	118.5 x 77.6 mm
G-ETQ570G0DM6 (DH6)	5.7"	320 x 240	124.7 x 100 mm
G-ETQ570G2DM6 (DH6)	5.7"	320 x 240	142.1 x 100 mm *
G-ETV570G0DMU (DHU)	5.7"	640 x 480	124.7 x 100 mm
G-ETV570G2DMU (DHU)	5.7"	640 x 480	142.1 x 100 mm *
G-ET0700G0DM6 (DH6)	7.0"	800 x 480	166 x 105.4 mm

DH6/DHU = with touch panel

* with mounting lugs

Pin Assignment of TFT Family Concept

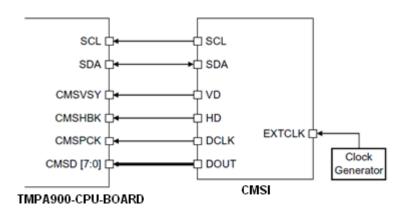
1	NC or /RESET	Hardware Reset (no Reset for 4.3" and 7.0")
2	Vss	Ground (connected to metal houseing)
3	B5	Blue Data Bit 5
4	B4	Blue Data Bit 4
5	В3	Blue Data Bit 3
6	B2	Blue Data Bit 2
7	B1	Blue Data Bit 1
8	В0	Blue Data Bit 0
9	Vss	Ground (connected to metal houseing)
10	G5	Green Data Bit 5
11	G4	Green Data Bit 4
12	G3	Green Data Bit 3
13	G2	Green Data Bit 2
14	G1	Green Data Bit 1
15	G0	Green Data Bit 0
16	Vss	Ground (connected to metal houseing)
17	R5	Red Data Bit 5
18	R4	Red Data Bit 4
19	R3	Red Data Bit 3
20	R2	Red Data Bit 2
21	R1	Red Data Bit 1
22	R0	Red Data Bit 0
23	Vss	Ground (connected to metal houseing)
24	DCLK	Dot Clock
25	Vss	Ground (connected to metal houseing)
26	HSYNC	Horizontal Sync Input
27	VSYNC	Vertical Sync Input
28	ENB	Data Enable Input
29	PWCTRL	LED driver shut down (on 5.7" it is a complete shut down of internal circuit)
30	VDD	Power supply for digital circuit
31	Vss	Ground (connected to metal housing)
32	Vss	Ground (connected to metal housing)
33	Vcc	Power supply for Vcom driver circuit (internal voltages)
34	Vcc	Power supply for Vcom driver circuit (internal voltages)
35	NC	Not connected / This becomes LED anode, when jumper setting is changed
36	LEDCTRL	Brightness control (or LED cathode, when jumper setting is changed)
37	YU	Touch (Top)
38	XL	Touch (Left)
39	YD	Touch (Bottom)
40	XR	Touch (Right)

3.21 SD Host Controller

Features:

- Data transmission/reception in frame units
- Error check: CRC7 (for commands), CRC16 (for Data)
- Synchronous method: bit synchronous by SDCLK
- SD memory/IO card interface: COMMAND (1bit), Data (4 bits), INT (1bit)
- Multiple port support: 1 card
- 512byte ×2 data buffer: 256words×16bits×2
- Card detect support (SDCxCD or SDCxDAT3)
- Data write protect support
- Detected below Status error
 - SDbuffer underflow /overflow
 - o timeout (response, other
 - o END error, CRC error, CMD error
- Recognizes the various response frame formats through the register settings
- The SD_CLK cycle division ratio can be set from fPCLK/2 to fPCLK/512
- The transfer data length can be set from either 1byte to 512byte
- Sector counter for multiple read/write operation (read: single read only)
- Buffer status mode transfer support

This product contains an SD host controller for controlling SD cards. To use the SD host controller, you need to join the SD Association. Please also note that a non-disclosure agreement must be signed with us before the detailed specifications of the SD host controller can be disclosed. For details, please contact us.


Signal	PIN	Input/Output	Function Remarks
SDC0DAT0 (Port_G0)	59	Input/Output	
SDC0DAT1 (Port_G1)	57	Input/Output	SDC0DAT0 to SDC0DAT3: Data I/O pin for SD card
SDC0DAT2 (Port_G2)	55	Input/Output	
SDC0DAT3 (Port_G3)	53	Input/Output	
SDC0CMD (Port_G4)	49	Input/Output	Command I/O pin for SD card
SDC0WP (Port_G5)	47	Input	Write-protect input pin for SD card
SDC0CD (Port_G6)	45	Input	Card detection input pin for SD card
SDC0CLK (Port_G7)	43	Input	Clock output pin for SD card

3.22 CMOS Camera Interface

The CMSI has the following features:

- SXGA(1280×1024), 4VGA(1280×960), VGA(640×480), QVGA(320×240),
 Special(320×180), QQVGA(160×120), CIF(352×288), QCIF(176×144)
- Input data format CRGB
- Input data sampling ratio 8-bit YUV4:2:2 or RGB888 if no color space conversion)
- Downscaling function
- 4VGA → VGA, QVGA, QQVGA
- VGA → QVGA, QQVGA
- QVGA → QQVGA
- Trimming function: Data can be trimmed to a desired size.

Signal	PIN	Input/Output	Function Remarks
L_D12(CMSPCK)	111	Input	Clock input for CMOS sensor
L_D13(CMSHSY)	109	Input	Horizontal synchronization input for CMOS sensor
L_D14(CMSHBK)	107	Input	Valid data detect input for CMOS sensor
L_D15(CMSVY)	105	Input	Vertical synchronization input for CMOS sensor
L_D16(CMSD0)	101	Input	CMOS data driver line
L_D17(CMSD1)	99	Input	CMOS data driver line
L_D18(CMSD2)	97	Input	CMOS data driver line
L_D19(CMSD3)	95	Input	CMOS data driver line
L_D20(CMSD4)	91	Input	CMOS data driver line
L_D21(CMSD5)	89	Input	CMOS data driver line
L_D22(CMSD6)	87	Input	CMOS data driver line
L_D23(CMSD7)	85	Input	CMOS data driver line

Attention: CMOS camera Interface uses some of the same pins as the LCDC data bus – so only 12bit colour (4096 display colours) is possible.

3.23 Melody/Alarm Generator

Melody Generator

Based on the low-speed clock (32.768 kHz), clock wave forms can be generated at any frequency from 4 Hz to 5461 Hz and outputted from the MLDALM pin. By connecting a buzzer etc outside, melody sounds can easily be played.

Alarm Generator

Can generate eight patterns of alarm output.

Can generate five types of fixed-interval interrupts (1 Hz, 2 Hz, 64 Hz, 512 Hz and 8192 Hz).

By connecting a buzzer etc outside, alarm sounds can easily be played.

Signal	PIN	Input/Output	Function Remarks
MLDALM (PORT C3)	108	Output	Melody/alarm output pin

3.24 Low Frequency Clock Output

Signal	PIN	Input/Output	Function Remarks
FSOUT (PORT_C4)	106	Output	Low frequency output clock pin

4.0 Pin Allocation SODIMM 144 Connector

	IS10 J19154-144-XXA110X					
1_	GND01	GND02	2			
3_ 5	VDD3V3	VDD3V3	6			
7	FUTURE_USE PC7/I2C0DA/INT9/USBOCN	ETHLED1 ETHLED2	8			
9_	PC6/I2C0CL/USBPON	ETHCT	10			
11 13	GND03	GND04	12			
15	SN6/USBHDP	ETHRXP	16			
17	SN7/USBHDM SR0/USBDDP	ETHRXN ETHTXP	18			
19_	SR1/USBDDM	ETHTXN	20			
21 23	GND05	GND06	22			
25	PA3/KI3 PA2/KI2	PN7/U0RTSN/INTG PN6/U0DTRN/INTF	26			
27	PA1/KI1	PN5/UORIN/INTE	28			
29_	PAO/KIO	PN4/U0DSRN/INTD	30			
31_ 33	GND07	GND08	32			
35	PB3/KO3 PB2/KO2	PN3/U0DCDN PN2/U0CTSN	36			
37	PB1/KO1/LCLAC	PN1/UORXD/SIROIN	38			
39_	PB0/KO0	PNO/U0TXD/SIR0OUT	40			
41_ 43	GND09	GND10	42			
45	PG7/SDC0CLK PG6/SDC0CD	PT5/U1RXD	46			
47	PG6/SDC0CD PG5/SDC0WP	PT4/U1TXD PT3/SP0DI	48			
49_	PG4/SDC0CMD	PT2/SP0D	50			
51_ 53	GND11	GND12	52 54			
55	PG3/SDC0DAT3 PG2/SDC0DAT2	PT1/SP0CLK PT0/SP0FSS	56			
57		F7/I2C1DA/INTC/U2RXD	58			
59_	PG0/SDC0DAT0	PF6/I2C1CL/U2TXD	60			
61 63	VDD3V3	VDD3V3	62			
65	GND13 PD7/INTB/AN7/PY	GND14 FUTURE USE	66			
67	PD6/INTA(TSI)/AN6/PX	FUTURE_USE	68			
69_ 71	PD5/AN5/MY	FUTURE_USE	70 72			
71 73	PD4/AN4/MX	FUTURE_USE	74			
75	GND15 SU4/LCLLP	GND16 PD3/AN3	76			
77_	SU3/LCLFP	PD2/AN2	78			
79_ 81	SU1/LCLAC	PD1/AN1	80			
83	SU0/LCLCP	PD0/AN0	84			
85	GND17 LC_D23	GND18 PM3/I2S1MCLK	86			
87_	LC_D22	PM2/I2S1DAT0	88			
89_ 91	LC_D21	PM1/I2S1CLK	90			
93	LC_D20	PM0/I2S1WS	94			
95	GND19 LC D19	GND20 PL3/I2S0MCLK/SP1DI	96			
97_	LC_D18	PL2/I2S0DATI/SP1DO	98			
99_ 01	LC_D17	PL1/I2SOCLK/SP1CLK	100			
.03	LC_D16	PL0/I2S0WS/SP1FSS	104			
05	GND21 LC_D15	GND22 PC4/FSOUT/PWM3OUT	106			
07_	LC_D14	PC3/MLDALM/PWM1OU	108			
09_ 11	LC_D13	PC2/PWE	110 112			
13	LC_D12	RESET	114			
15	GND23 LC_D11	GND24 SP5/TDO_JTAG	116			
17_	LC_D10	SP4/RTCK_JTAG	118			
19_	LC_D9	SPO/TCK_JTAG	120			
23	LC_D8 GND25	SP1/TMS_JTAG	124			
25	GND25 LC_D7	GND26 SP2/TDI_JTAG	126			
27_	LC_D6	SP3/TRSTN_JTAG	128			
.29 .31	LC_D5	SN2/SELJTAG	130 132			
33	LC_D4	SM7/AM1_JTAG	134			
35	GND27 LC_D3	GND28 VIN3V3	136			
37_	LC_D2	VIN3V3	138			
.39_ .41	LC_D1	VIN3V3	140 142			
41_	LC_D0	VIN3V3	144			
-	GND29	GND30				

PINOUT (1/5)

Numper of	Pin Name	Input/Output	Function Remarks
Pin	ONE		
1-2	GND		Ground
3-4	VDD3V3	Output	Power
5	nc	Output	leave open
6	LED1	Output	Ethernet LED1: Speed LED
7	USB_OC	Input/Output	PC7: I/O port
		Input/Output	I2C0DA: I2C data I/O
		Input	INT9: Interrupt request pin9: an interrupt request pin that
			can program the rising/falling edge
		Input	USBOCn: Over Current detect for USB Host
8	LED2	Output	Ethernet LED2: Link/Active LED
9	USB_PON	Input/Output	PC6: Port C6: I/O port
		Input/Output	I2C0CL: I2C clock I/O
		Output	USBPON: Power On Enable for USB Host
10	CT		Ether
11-12	GND	-	Ground
13	USB HDP		USB Host pin (D+)
14	RXP		Ethernet
15	USB HDM		USB Host pin (D-)
16	RXN		Ethernet
17	USB_DDP		USB Device pin (D+)
18	TXP		Ethernet
19	USB DDM		USB Device pin (D-)
20	TXN		Ethernet
21-22	GND		Ground
	Port A3		PA3: Input port
23	POR A3	Input	
			Key input KI3: Pin for key-on wake up (with Schmitt input and pull-up resistor)
24	Port N7	Input/Output	PN7: I/O port
24	POIL IN/		U0RTSn: Output modem control line RTD(Request To
		Output	
		Innut	Send) INTG: Interrupt request pin G: an interrupt request pin that
		Input	can program the rising/falling edge
25	Port A2	Innut	Port A2: Input port
25	POILAZ	Input	Key input KI2: Pin for key-on wake up
			(with Schmitt input and pull-up resistor)
26	Dort NG	Innut/Output	PN6: I/O port
26	Port N6	Input/Output	U0DTRn: Output modem control line DTR (Data Terminal
		Output	Ready)
		Innut	
		Input	INTF: Interrupt request pin F: an interrupt request pin that can program the rising/falling edge
27	Dort A1	Innut	Port A1: Input port
21	Port A1	Input	Key input KI1: Pin for key-on wake up
			(with Schmitt input and pull-up resistor)
28	Dort NE	Input/Output	PN5: I/O port
20	Port N5		
		Input	U0RIn: Modem status signal RI (Ring Indicator)
		Input	INTE: Interrupt request pin E: an interrupt request pin that
20	Dort AO	Input	can program the rising/falling edge Port A0: Input port
29	Port A0	Input	
			Key input KI0: Pin for key-on wake up
	5 (1)(4	1 1/0 1 1	(with Schmitt input and pull-up resistor)
30	Port N4	Input/Output	PN4: I/O port
		Input	U0DSRIn: Modern status signal DSR (Data Set Ready)
1		Input	INTD: Interrupt request pin D: an interrupt request pin that
04.00	OND		can program the rising/falling edge
31-32	GND	-	Ground

PINOUT (2/5)

Numper of	Pin Name	Input/Output	Function Remarks
Pin			
33	Port B3	Output Output	PB3: Output port KO3: Key out pins (open-drain can be set)
34	Port N3	Input/Output Input	PN3: I/O port U0DCDn: Modem status signal DCD (Data Carrier Detect)
35	Port B2	Output	PB2: Output port
	2 (112	Output	KO2: Key out pins (open-drain can be set)
36	Port N2	Input/Output Input	Port N2: I/O port U0CTSn: UART function 0 data can be transmitted (Clear to send)
37	Port B1	Output	PB1: Output port
31	PULBI	Output	KO1: Key out pins (open-drain can be set)
38	Port N1	Input/Output	Port N1: I/O port
		Input	U0RXD: UART function 0 receive data
		Input	SIR0IN: Data input pin for IrDA1.0
38	Port B0	Output	PB0: Output port
		Output	KO0: Key out pins (open-drain can be set)
40	Port N0	Input/Output	Port N0: I/O port
		Output	UART function 0 transmission data
		Output	Data output pin for IrDA1.0
41-42	GND	•	Ground
43	Port G7	Input/Output	Port G7: I/O port
		Input/Output	SDC0CLK: Clock output pin for SD card
44	Port T5	Input/Output	Port T5: I/O port
		Input	U1RXD: UART function 1 receive data
45	Port G6	Input/Output	Port G6: I/O port
		Input	SDC0CD: Card detection input pin for SD card
46	Port T4	Input/Output	Port T4: I/O port
		Output	U1TXD: UART function 1 transmission data
47	Port G5	Input/Output	Port G5: I/O port
		Input	SDC0WP: Write-protect input pin for SD card
48	Port T3	Input/Output	PT3: I/O port
		Input	SP0DI: Data input pin for SSP0
49	Port G4	Input/Output	Port G4: I/O port
		Input/Output	SDC0CMD: Command I/O pin for SD card
50	Port T2	Input/Output	Port T2: I/O port
		Output	SP0DO: Data output pin for SSP0
51-52	GND	-	Ground
53	Port G3	Input/Output	PG3: I/O port
		Input/Output	SDC0DAT3: Data I/O pin for SD card
54	Port T1	Input/Output	Port T1: I/O port
		Input/Output	SP0CLK: Clock pin for SSP0
55	Port G2	Input/Output	PG2: I/O port
		Input/Output	SDC0DAT2: Data I/O pin for SD card
56	Port T0	Input/Output	PT0: I/O port
		Input/Output	SP0FSS: FSS pin for SSP0
57	Port G1	Input/Output	PG1: I/O port
		Input/Output	SDC0DAT1: Data I/O pin for SD card
58	Port F7	Input/Output	PF7: I/O port
		Input/Output	I2C1DA: I2C data I/O
		Input	INTC: Interrupt request pin C: an interrupt request pin that
		Input	can program the rising/falling edge
50	Port CO	Input Input/Output	U2RXD: UART function 2 receive data
59	Port G0	Input/Output Input/Output	PG0: I/O port SDC0DAT0: Data I/O pin for SD card
60	Port F6		PF6: I/O port
60	FUILFO	Input/Output Input/Output	PF6: I/O port I2C1CL: I2C clock I/O
		Output	U2TXD: UART function 2 transmission Data
61-62	VDD3V3	Output	OZIAD. OANT IUHUUH Z HAHSHIISSIUH DALA
63-64			Ground
03-04	GND	-	Ground

PINOUT (3/5)

Numper of	Pin Name	Input/Output	Function Remarks
Pin	TOL DV	la monte	DD7. January
65	TSI_PY	Input	PD7: Input port
		Input	AN7: Analog input 7 converter input pin
		Output	PY: Y-plus: Y-connecting pin for touch panel
		Input	INTB: interrupt request pin B - an interrupt request pin that
66	NC		can program the rising/falling edge
66 67	NC TOLDY	- Innert	Not connected.
67	TSI_PX	Input	PD6: Input port
		Input	AN6: Analog input 6 converter input pin PX: X-plus: X-connecting pin for touch panel
		Output	INTA: Interrupt request pin A - an interrupt request pin that
		Input	can program the rising/falling edge
68	NC		Not connected.
69	TSI_MY	Input	PD5: Input port
09	I SI_IVI I	Input	AN5: Analog input 5 -> AD converter input pin
		Output	MY: Y-minus -> Y-connecting pin for touch panel
70	NC	- Output	Not connected.
71	TSI_MX	Input	PD4: Input port
7 1	TOI_WIX	Input	AN4: Analog input 4 -> AD converter input pin
		Output	MX: X-minus -> X-connecting pin for touch panel
72	NC	-	Not connected.
73-74	GND	_	Ground
75	L_CLLP	Output	LCLLP: LCD driver output pin
76	Port D3	Input	PD3: Input port
. 0	1 011 20	Input	AN3: Analog input pin
77	L CLFP	Output	LCLFP: LCD driver output pin
78	Port D2	Input	PD2: Input port
. 0	1 011 52	Input	AN2: Analog input pin
79	L CLAC	Output	LCLAC: LCD driver output pin
80	Port D1	Input	PD1: Input port
		Input	AN1: Analog input pin
81	L_CLCP	Output	LCLCP: LCD driver output pin
82	Port D0	Input	PD0: Input port
		Input	AN0: Analog input pin
83-84	GND	-	Ground
85	L_D23	Output	PK7: Output ports
		Output	LD23: Data bus for LCD driver
		Output	CMSD7: Data bus for CMOS Sensor
86	Port M3	Input/Output	PM3: I/O port
		Output	I2S1MCLK: I2S1 master clock output for transmission
			circuit
87	L_D22	Output	PK6: Output ports
		Output	LD22: Data bus for LCD driver
		Output	CMSD6: Data bus for CMOS Sensor
88	Port M2	Input/Output	PM2: I/O port
00	1. 504	Output	I2S1DATO: I2S1 transmission serial data output
89	L_D21	Output	PK5: Output ports
		Output	LD21: Data bus for LCD driver
00	Dort M1	Output	CMSD5: Data bus for CMOS Sensor
90	Port M1	Input/Output	PM1: I/O port
91	1 D20	Input/Output	I2S1CLK: I2S1 serial clock input/output
91	L_D20	Output	PK4: Output ports LD20: Data bus for LCD driver
		Output Output	CMSD4: Data bus for CMOS Sensor
92	Port M0	Input/Output	PM0: I/O port
34	I OILIVIO	Input/Output	I2S1WS: I2S1 word select input/output
93-94	GND		Ground
30-2 4	UND	<u> </u>	Ground

PINOUT (4/5)

Numper of	Pin Name	Input/Output	Function Remarks
Pin 95	L_D19	Output	PK3: Output ports
95	L_D19	Output	LD19: Data bus for LCD driver
		Output	CMSD3: Data bus for CMOS Sensor
96	Port L3	Input/Output	PL3: I/O port
90	POILLS	Output	
		Output	I2S0MCLK: I2S0 master clock output for receive circuit SP1DI: Data input pin for SSP1
97	L_D18	Output	PK2: Output ports
97	L_D16		
		Output	LD18: Data bus for LCD driver
00	D110	Output	CMSD2: Data bus for CMOS Sensor
98	Port L2	Input/Output	PL2: I/O port
		Input	I2S0DATI: I2S0 receive serial data input
		Output	SP1DO: Data output pin for SSP1
99	L_D17	Output	PK1: Output ports
		Output	LD17: Data bus for LCD driver
		Output	CMSD1: Data bus for CMOS Sensor
100	Port L1	Input/Output	PL1: I/O port
		Input/Output	I2S0CLK: I2S0 serial clock input/output
		Input/Output	SP1CLK: Clock output pin for SSP1
101	L_D16	Output	PK0: Output ports
		Output	LD16: Data bus for LCD driver
		Output	CMSD0: Data bus for CMOS Sensor
102	Port L0	Input/Output	PL0: I/O port
		Input/Output	I2SOWS: I2SO word select input/output
		IIIpul/Output	
		Input/Output	SP1FSS: FSS pin for SSP1
103-104	GND	Input/Output -	SP1FSS: FSS pin for SSP1 Ground
103-104 105	GND L_D15		SP1FSS: FSS pin for SSP1 Ground PJ7: Input/Output port
		Input/Output -	SP1FSS: FSS pin for SSP1 Ground
		Input/Output - Input/Output	SP1FSS: FSS pin for SSP1 Ground PJ7: Input/Output port
		Input/Output - Input/Output Output	SP1FSS: FSS pin for SSP1 Ground PJ7: Input/Output port LD15: Data bus for LCD driver CMSHBK: Vertical synchronization Input for CMOS Sensor PC4: Output port
105	L_D15	Input/Output - Input/Output Output Input	SP1FSS: FSS pin for SSP1 Ground PJ7: Input/Output port LD15: Data bus for LCD driver CMSHBK: Vertical synchronization Input for CMOS Sensor PC4: Output port FSOUT: Low-frequency output clock pin
105	L_D15	Input/Output - Input/Output Output Input Output Output	SP1FSS: FSS pin for SSP1 Ground PJ7: Input/Output port LD15: Data bus for LCD driver CMSHBK: Vertical synchronization Input for CMOS Sensor PC4: Output port FSOUT: Low-frequency output clock pin PWM2OUT: Timer PWM out port
105	L_D15	Input/Output - Input/Output Output Input Output Output Output Output	SP1FSS: FSS pin for SSP1 Ground PJ7: Input/Output port LD15: Data bus for LCD driver CMSHBK: Vertical synchronization Input for CMOS Sensor PC4: Output port FSOUT: Low-frequency output clock pin
105	L_D15 Port C4	Input/Output - Input/Output Output Input Output Output Output Output Output	SP1FSS: FSS pin for SSP1 Ground PJ7: Input/Output port LD15: Data bus for LCD driver CMSHBK: Vertical synchronization Input for CMOS Sensor PC4: Output port FSOUT: Low-frequency output clock pin PWM2OUT: Timer PWM out port
105	L_D15 Port C4	Input/Output	SP1FSS: FSS pin for SSP1 Ground PJ7: Input/Output port LD15: Data bus for LCD driver CMSHBK: Vertical synchronization Input for CMOS Sensor PC4: Output port FSOUT: Low-frequency output clock pin PWM2OUT: Timer PWM out port PJ6: Input/Output port
105	L_D15 Port C4	Input/Output	SP1FSS: FSS pin for SSP1 Ground PJ7: Input/Output port LD15: Data bus for LCD driver CMSHBK: Vertical synchronization Input for CMOS Sensor PC4: Output port FSOUT: Low-frequency output clock pin PWM2OUT: Timer PWM out port PJ6: Input/Output port LD14: Data bus for LCD driver
105 106 107	L_D15 Port C4 L_D14	Input/Output - Input/Output Output Input Output Output Output Output Output Output Input/Output Input/Output Input/Output	SP1FSS: FSS pin for SSP1 Ground PJ7: Input/Output port LD15: Data bus for LCD driver CMSHBK: Vertical synchronization Input for CMOS Sensor PC4: Output port FSOUT: Low-frequency output clock pin PWM2OUT: Timer PWM out port PJ6: Input/Output port LD14: Data bus for LCD driver CMSHBK: Valid Data detect input for CMOS Sensor PC3: Output port MLDALM: Melody alarm output pin
105 106 107	L_D15 Port C4 L_D14	Input/Output	SP1FSS: FSS pin for SSP1 Ground PJ7: Input/Output port LD15: Data bus for LCD driver CMSHBK: Vertical synchronization Input for CMOS Sensor PC4: Output port FSOUT: Low-frequency output clock pin PWM2OUT: Timer PWM out port PJ6: Input/Output port LD14: Data bus for LCD driver CMSHBK: Valid Data detect input for CMOS Sensor PC3: Output port MLDALM: Melody alarm output pin PWM0OUTPUT: Timer PWM out port
105 106 107	Port C4 L_D14 Port C3	Input/Output	SP1FSS: FSS pin for SSP1 Ground PJ7: Input/Output port LD15: Data bus for LCD driver CMSHBK: Vertical synchronization Input for CMOS Sensor PC4: Output port FSOUT: Low-frequency output clock pin PWM2OUT: Timer PWM out port PJ6: Input/Output port LD14: Data bus for LCD driver CMSHBK: Valid Data detect input for CMOS Sensor PC3: Output port MLDALM: Melody alarm output pin PWM0OUTPUT: Timer PWM out port
105 106 107 108	L_D15 Port C4 L_D14	Input/Output	SP1FSS: FSS pin for SSP1 Ground PJ7: Input/Output port LD15: Data bus for LCD driver CMSHBK: Vertical synchronization Input for CMOS Sensor PC4: Output port FSOUT: Low-frequency output clock pin PWM2OUT: Timer PWM out port PJ6: Input/Output port LD14: Data bus for LCD driver CMSHBK: Valid Data detect input for CMOS Sensor PC3: Output port MLDALM: Melody alarm output pin
105 106 107 108	Port C4 L_D14 Port C3	Input/Output	SP1FSS: FSS pin for SSP1 Ground PJ7: Input/Output port LD15: Data bus for LCD driver CMSHBK: Vertical synchronization Input for CMOS Sensor PC4: Output port FSOUT: Low-frequency output clock pin PWM2OUT: Timer PWM out port PJ6: Input/Output port LD14: Data bus for LCD driver CMSHBK: Valid Data detect input for CMOS Sensor PC3: Output port MLDALM: Melody alarm output pin PWM0OUTPUT: Timer PWM out port PJ5: Input/Output port LD13: Data bus for LCD driver
105 106 107 108	Port C4 L_D14 Port C3	Input/Output	SP1FSS: FSS pin for SSP1 Ground PJ7: Input/Output port LD15: Data bus for LCD driver CMSHBK: Vertical synchronization Input for CMOS Sensor PC4: Output port FSOUT: Low-frequency output clock pin PWM2OUT: Timer PWM out port PJ6: Input/Output port LD14: Data bus for LCD driver CMSHBK: Valid Data detect input for CMOS Sensor PC3: Output port MLDALM: Melody alarm output pin PWM0OUTPUT: Timer PWM out port PJ5: Input/Output port LD13: Data bus for LCD driver CMSHSY: Horizontal synchronization Input for CMOS Sensor
105 106 107 108 109	L_D15 Port C4 L_D14 Port C3 L_D13	Input/Output	SP1FSS: FSS pin for SSP1 Ground PJ7: Input/Output port LD15: Data bus for LCD driver CMSHBK: Vertical synchronization Input for CMOS Sensor PC4: Output port FSOUT: Low-frequency output clock pin PWM2OUT: Timer PWM out port PJ6: Input/Output port LD14: Data bus for LCD driver CMSHBK: Valid Data detect input for CMOS Sensor PC3: Output port MLDALM: Melody alarm output pin PWM0OUTPUT: Timer PWM out port PJ5: Input/Output port LD13: Data bus for LCD driver CMSHSY: Horizontal synchronization Input for CMOS Sensor
105 106 107 108	Port C4 L_D14 Port C3	Input/Output	SP1FSS: FSS pin for SSP1 Ground PJ7: Input/Output port LD15: Data bus for LCD driver CMSHBK: Vertical synchronization Input for CMOS Sensor PC4: Output port FSOUT: Low-frequency output clock pin PWM2OUT: Timer PWM out port PJ6: Input/Output port LD14: Data bus for LCD driver CMSHBK: Valid Data detect input for CMOS Sensor PC3: Output port MLDALM: Melody alarm output pin PWM0OUTPUT: Timer PWM out port PJ5: Input/Output port LD13: Data bus for LCD driver CMSHSY: Horizontal synchronization Input for CMOS Sensor PC2: Output port
105 106 107 108 109	L_D15 Port C4 L_D14 Port C3 L_D13	Input/Output	SP1FSS: FSS pin for SSP1 Ground PJ7: Input/Output port LD15: Data bus for LCD driver CMSHBK: Vertical synchronization Input for CMOS Sensor PC4: Output port FSOUT: Low-frequency output clock pin PWM2OUT: Timer PWM out port PJ6: Input/Output port LD14: Data bus for LCD driver CMSHBK: Valid Data detect input for CMOS Sensor PC3: Output port MLDALM: Melody alarm output pin PWM0OUTPUT: Timer PWM out port PJ5: Input/Output port LD13: Data bus for LCD driver CMSHSY: Horizontal synchronization Input for CMOS Sensor
105 106 107 108 109	Port C4 L_D14 Port C3 L_D13 Port C2	Input/Output	SP1FSS: FSS pin for SSP1 Ground PJ7: Input/Output port LD15: Data bus for LCD driver CMSHBK: Vertical synchronization Input for CMOS Sensor PC4: Output port FSOUT: Low-frequency output clock pin PWM2OUT: Timer PWM out port LD14: Data bus for LCD driver CMSHBK: Valid Data detect input for CMOS Sensor PC3: Output port MLDALM: Melody alarm output pin PWM0OUTPUT: Timer PWM out port LD13: Data bus for LCD driver CMSHSY: Horizontal synchronization Input for CMOS Sensor PC2: Output port PC2: Output port PC2: Output port PC2: Output port PWE: External power source control output.
105 106 107 108 109	L_D15 Port C4 L_D14 Port C3 L_D13	Input/Output	SP1FSS: FSS pin for SSP1 Ground PJ7: Input/Output port LD15: Data bus for LCD driver CMSHBK: Vertical synchronization Input for CMOS Sensor PC4: Output port FSOUT: Low-frequency output clock pin PWM2OUT: Timer PWM out port PJ6: Input/Output port LD14: Data bus for LCD driver CMSHBK: Valid Data detect input for CMOS Sensor PC3: Output port MLDALM: Melody alarm output pin PWM0OUTPUT: Timer PWM out port PJ5: Input/Output port LD13: Data bus for LCD driver CMSHSY: Horizontal synchronization Input for CMOS Sensor PC2: Output port PWE: External power source control output.
105 106 107 108 109	Port C4 L_D14 Port C3 L_D13 Port C2	Input/Output	SP1FSS: FSS pin for SSP1 Ground PJ7: Input/Output port LD15: Data bus for LCD driver CMSHBK: Vertical synchronization Input for CMOS Sensor PC4: Output port FSOUT: Low-frequency output clock pin PWM2OUT: Timer PWM out port PJ6: Input/Output port LD14: Data bus for LCD driver CMSHBK: Valid Data detect input for CMOS Sensor PC3: Output port MLDALM: Melody alarm output pin PWM0OUTPUT: Timer PWM out port LD13: Data bus for LCD driver CMSHSY: Horizontal synchronization Input for CMOS Sensor PC2: Output port PUE: External power source control output. PJ4: Input/Output port LD12: Data bus for LCD driver
105 106 107 108 109	L_D15 Port C4 L_D14 Port C3 L_D13 Port C2 L_D12	Input/Output	SP1FSS: FSS pin for SSP1 Ground PJ7: Input/Output port LD15: Data bus for LCD driver CMSHBK: Vertical synchronization Input for CMOS Sensor PC4: Output port FSOUT: Low-frequency output clock pin PWM2OUT: Timer PWM out port PJ6: Input/Output port LD14: Data bus for LCD driver CMSHBK: Valid Data detect input for CMOS Sensor PC3: Output port MLDALM: Melody alarm output pin PWM0OUTPUT: Timer PWM out port LD13: Data bus for LCD driver CMSHSY: Horizontal synchronization Input for CMOS Sensor PC2: Output port PD5: Input/Output port LD13: Data bus for LCD driver CMSHSY: Horizontal synchronization Input for CMOS Sensor PC2: Output port PWE: External power source control output. PJ4: Input/Output port LD12: Data bus for LCD driver CMSPCK: Clock input for CMOS Sensor
105 106 107 108 109	Port C4 L_D14 Port C3 L_D13 Port C2	Input/Output	SP1FSS: FSS pin for SSP1 Ground PJ7: Input/Output port LD15: Data bus for LCD driver CMSHBK: Vertical synchronization Input for CMOS Sensor PC4: Output port FSOUT: Low-frequency output clock pin PWM2OUT: Timer PWM out port PJ6: Input/Output port LD14: Data bus for LCD driver CMSHBK: Valid Data detect input for CMOS Sensor PC3: Output port MLDALM: Melody alarm output pin PWM0OUTPUT: Timer PWM out port LD13: Data bus for LCD driver CMSHSY: Horizontal synchronization Input for CMOS Sensor PC2: Output port PUC: Output port PWE: External power source control output. PJ4: Input/Output port LD12: Data bus for LCD driver CMSPCK: Clock input for CMOS Sensor Reset: Initializes TMPA910CRA (with Schmitt input and
105 106 107 108 109	L_D15 Port C4 L_D14 Port C3 L_D13 Port C2 L_D12	Input/Output	SP1FSS: FSS pin for SSP1 Ground PJ7: Input/Output port LD15: Data bus for LCD driver CMSHBK: Vertical synchronization Input for CMOS Sensor PC4: Output port FSOUT: Low-frequency output clock pin PWM2OUT: Timer PWM out port PJ6: Input/Output port LD14: Data bus for LCD driver CMSHBK: Valid Data detect input for CMOS Sensor PC3: Output port MLDALM: Melody alarm output pin PWM0OUTPUT: Timer PWM out port LD13: Data bus for LCD driver CMSHSY: Horizontal synchronization Input for CMOS Sensor PC2: Output port PD5: Input/Output port LD13: Data bus for LCD driver CMSHSY: Horizontal synchronization Input for CMOS Sensor PC2: Output port PWE: External power source control output. PJ4: Input/Output port LD12: Data bus for LCD driver CMSPCK: Clock input for CMOS Sensor

PINOUT (5/5)

Numper of Pin	Pin Name	Input/Output	Function Remarks
115	L D11	lOutput	PJ3: Output ports
	_	Output	LD11: Data bus for LCD driver
116	TDO	Output	TDO: Data output pin for JTAG
117	L_D10	Output	PJ2: Output ports
	_	Output	LD10: Data bus for LCD driver
118	TCK_RTN	Output	RTCK: Clock output pin for JTAG
119	L_D9	Output	PJ1: Output ports
	_	Output	LD9: Data bus for LCD driver
120	TCK	Input	Clock pin for JTAG
121	L_D8	Output	PJ0: Output ports
		Output	LD8: Data bus for LCD driver
122	TMS	Input	TMS: Pin for JTAG
123-124	GND	-	Ground
125	L_D7	Output	LD7: Data bus for LCD driver
126	TDI	Input	TDI: Data input pin for JTAG
127	L_D6	Output	LD6: Data bus for LCD driver
128	TRST	Input	TRSTn: Reset pin for JTAG
129	L_D5	Output	LD5: Data bus for LCD driver
130	JTAG		
131	L_D4	Output	LD4: Data bus for LCD driver
132	BOOT		
133-134	GND		
135	L_D3	Output	LD3: Data bus for LCD driver
136	VIN	Input	Power Supply
137	L_D2	Output	LD2: Data bus for LCD driver
138	VIN	Input	Power Supply
139	L_D1	Output	LD1: Data bus for LCD driver
140	VIN	Input	Power Supply
141	L_D0	Output	LD0: Data bus for LCD driver
142	VIN	Input	Power Supply
143-144	GND	-	Ground

The module's power supply must run through pins VIN: 136, 138, 140, 142, GND: 133, 134, 143, 144 in order to ensure good disturbance reaction results. It is recommended to filter and buffer the power supply.

Signal currents of external appliances may be connected via the module's GND connections, e.g. in order to facilitate the layout. In order to avoid failures, however, higher currents and current peaks are not permissible.

5.0 Software Components

5.1 Basics - Data Transfer to TMPA900 CPU Board

There are three methods for the data transfer available:

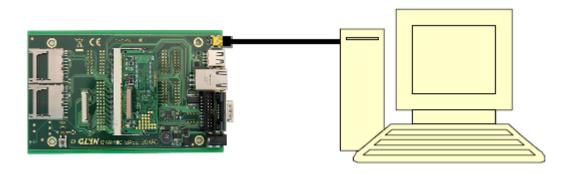
- ELDIO Download Wizard

Programming Software over USB-Device with a small Windows program - This method works **only** if the memory (Flash) is empty (first time programming or cleared before).

- **JTAG (Joint Test Action Group)**This method works even if the memory (Flash) is empty (first time programming).

- Network

Using an appropriate network boot ROM or a boot loader, it is also possible to download your application over a network using for example TFTP, FTP or NFS. The target will download the data from a server residing on the host and then executed. During the development phase, this method allows you to quickly test your application without having to burn the flash. We use the free boot manager u-boot and a TFTP server for uploading the software.

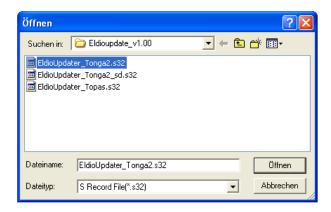

5.1.1 ELDIO Download Wizard

ATTENTION:

- Works only with Empty NAND Flash (at least page 0)
- Board has to be connected to PC without USB Hub

First, before using ELDIO Updater install the driver. Rightclick on: trl_drv_2k.inf (For Windows 2000) or trl_drv_xp.inf (Windows XP) and select install.

Connect the Base Board (USB-Device) to the PC. If you have problems with connection to the board when you attach the board via USB Hub, please connect the board directly to the PC.



Start up ELDIOUpdater.exe

Lower left side - Click on Select Firmware - Choose Firmware for our board:

EldioUpdater_Tonga2.s32

Than Click on Next- Wait until connection established appears. Click on Next Select Destination (Ram, NOR, NAND) – RAM or NAND. Select start page (normally 0 if you want to flash u-boot, or bigimage)

Than select Target File to Flash. Click on next Wait until flash process has finished.

There is also a small script "gen_flash_image" to make one "big" image out of the components – u-boot, splashscreen, kernel and root-filesystem.

Run this script under Linux in a terminal in the following way:

./gen flash image <u-boot> <kernel> <splash> <rootfs> <output>

Example:

./gen_flash_image ./u-boot_nand_tonga2.bin ./ulmage ./splash.bin ./rootfs.jffs2 ./output.bin

The result is one big output.bin file. Now you can program the complete software in one step!

You find it with a demo on the CD: Eldioupdate_v1.00\bigimage

5.1.2 Basics – Installing J-Link Lite

The first software is a MS Windows software, so it runs only under windows. Before you plug your J-Link Lite into your computer's USB port, you have to extract the setup tool <code>Setup_JLinkARM_V<VersionNumber>.zip.</code> You will find it on the CD in the folder Segger_JLINK_Lite. The setup wizard will install the software and documentation pack that also includes the certified JLink USB driver. Start the setup by double clicking Setup_JLinkARM_V<Version-Number>.exe. The license agreement dialog box will open. Accept the terms with the "Yes" button.

After installing the software, connect the Jlink on your host to an USB port and on the dedicated JTAG connector on the Glyn graphic base board.

5.1.3 Basics - Installing a TFTP Server

To transfer data to the board, you have to install a TFTP server. Nowadays, there are various free servers available. The documentation of these servers is usually so detailed that the installation is usually not directly addressed. One of the most important features is the fast uploading software via TFTP.

It's the best way during development phase.

5.1.4 Basics - Working completely under Linux

The delivered J-Link is also working under Linux using openOCD Please refer to http://openocd.berlios.de/web/ for installing and usage.

It's also possible to have a tpft server running under Linux - please refer to your Linux Distribution Documentation how to install

5.2 u-boot

Without a good boot loader, the TMPA900-CPU-Board is just a complicated piece of silicon with nothing to do. That's where u-boot, a free universal boot loader software, steps in (www.denx.de).

A boot loader, sometimes referred to as a boot monitor, is a small piece of software that executes soon after powering up the module. In an embedded system, the role of the boot loader is more complicated since these systems do not have a BIOS to perform the initial system configuration. The low level initialization of microprocessors, memory controllers, and other board specific hardware varies from board to board and CPU to CPU. These initializations must be performed before a Linux kernel or a normal C-program image can execute.

The minimum an embedded loader has to offer are the following features:

- Initializing the hardware, especially the memory controller.
- Providing boot parameters for the Linux kernel.
- Starting the Linux kernel or program/application

Additionally, most boot loaders also provide "convenience" features that simplify development:

- Set up a UART for terminal
- Reading and writing to the memory
- Uploading new binary images to the board's RAM via a serial line or Ethernet
- Copying binary images from RAM to FLASH memory
- First handling of the memory devices Nand-Flash & DDR-RAM.

U-boot is a boot loader which is very common in the embedded Linux world The u-boot supports different architectures - in our case, ARM. The boot loader has been published under the GNU licence which means that it is absolutely free of charge.

Detailed documentation can be found at:

http://www.denx.de/wiki/u-bootdoc/Presentationhttp://www.denx.de/wiki/u-bootdoc/WebHome

GIT server for the u-boot (u-boot sources patched to work with our board): http://git.labs.kernelconcepts.de/?p=u-boot-tmpa9xx.git;a=summary

Demo file systems, Linux kernel binary, u-boot binary:

http://www.mucross.com/downloads/tonga-linux/

5.2.1 The Boot Process

How does the u-boot work on the TMPA900 CPU board?

There is a DDR-RAM and NAND flash integrated on the TMPA900 CPU board. It is not possible to execute the program code directly from the NAND flash. The program code has to be copied in segments by a boot manager (u-boot) from the NAND flash to the DDR RAM and then executed from there.

First, the CPU executes the boot code in the boot ROM. This boot code loads a special boot block from the NAND flash into the SRAM of the CPU. This special boot block initialises the RAM and loads the u-boot from the NAND to the RAM and jumps into it.

There are many additional features on the TMPA900-CPU-Board, such as installation of software via RS232 and TFTP. The u-boot needs approx. 200kb. Including the boot block, it needs approx. 330kBytes.

Being an interactive console (11500,8N1), the u-boot enables hardware initialisation during the development process. The u-boot allows hardware tests (e.g. RAM, network). One of the most important features is the uploading of software, e.g. via TFTP. U-boot also offers debug features.

An overview of some important u-commands:

- help prints online help
- help <command> prints online help for a command
- *printenv* prints environment variables

Configuration commands:

- setenv ipaddr <ip> Sets the IP-Address of the board
- setenv serverip <ip> Sets the TFTP server (host)IP address
- saveenv Saves environment variables

Flash memory commands:

- nand write <Source-Address> <Destination-Address> <Size>
- nand read <Source-Address> <Size>
- nand erase <Start-Address> <Size>

5.2.2 Flashing the u-boot

There are two ways to flash the u-boot on the board.

5.2.2.1 Flashing the u-boot over JTAG

This method works even if the memory (flash) is empty. For this, check also chapter: 5.2.2.9 What to do if the boot loader has been flashed incorrectly

In order to flash the precompiled version of the boot manager on the board, you have to use the J-Link Lite with the u-boot RAM version (u-boot.bin). To make sure that the J-Link works, you have to run the installation software from the Segger folder. This allows all required drivers, as well as the J-Link – commander, to be installed on the PC. Now connect the J-Link to the GLYN-BASE-BOARD and your host PC. Run the program Terraterm with the setting 115200/8/no/1/no flow. (alternatively Hypertherm).

The boot manager is constantly updated. So you please download the current version from our web page – www.toshiba-mikrocontroller.de.

```
J-Link Commander

SEGGER J-Link Commander U4.02b ('?' for help)
Compiled Feb 16 2009 17:14:45
DLL version U4.02b, compiled Feb 16 2009 17:14:32
Firmware: J-Link ARM U6 compiled Jun 30 2009 11:05:04
Hardware: U6.00
S/N: 560
UTarget = 3.280U
Info: TotalIRLen = 4, IRPrint = 0x01
Info: CP15.0.0: 0x41069265: ARM, Architecure 5TEJ
Info: CP15.0.1: 0x10152152: ICache: 16kB (4*128*32), DCache: 16kB (4*128*32)
Info: Cache type: Separate, Write-back, Format C (WT supported)
Found 1 JTAG device, Total IRLen = 4:
Id of device #0: 0x07926031
Found ARM with core Id 0x07926031 (ARM9)
JTAG speed: 5 kHz
J-Link>
```


Please enter the following commands and confirm by pressing return:

Speed adaptive

r

g

halt

loadbin u-boot.bin,0x43F00000 setpc 0x43F00000

g

From now on, the boot manager should login to the terminal and report its status. In order to flash the boot manager, go back to the J-link commander and enter the following commands:

halt

loadbin u-boot_nand_tonga2.bin,0x40600000

g

Now go back to the terminal program and enter the following commands:

nand erase 0 0x60000 nand write 0x40600000 0 0x60000

If you now push the RESET button, the u-boot in the terminal program will answer and can be configured. The u-boot can be used to load both a Linux kernel and a normal application. The bad block handling, which is necessary for NAND flashing, is also done by the u-boot.

<u>Note:</u> The start address or size depends on which u-boot is used and the matching kernel. These values refer to the versions of 6/2/2010.

5.2.2.2 Update the u-boot via network (handle with care)

If you want to change the existing u-boot on the board, you can do this via TFTP server.

>tftp u-boot_nand_tonga2.bin // Loads u-boot into RAM.

>nand erase u-boot // Erases old u-boot

>nand write \${fileaddr} u-boot // Writes new u-boot into flash

Important: After installing the uboot you have to reset your system (restart u-boot).

If you have some problems with the update – for example nothing works anymore - please check chapter: **5.2.2.9 What to do if the boot loader has been flashed incorrectly**

If you want to change the existing -old- u-boot (Before August 2010), you can do this also via TFTP server.

> tftp 0x40600000 u-boot_nand_tonga2.bin // Loads u-boot into RAM.

> nand erase 0 0x60000 // Erases old u-boot

> nand write 0x40600000 0 0x60000 // Writes new u-boot into flash

5.2.2.3 U-boot - Environment Setup

First, the serial terminal program runs and auto boot is aborted by pressing the SPACE bar.

U-Boot 2010.06 (Sep 01 2010 - 11:08:49)

DRAM: 64 MiB NAND: 256 MiB

Found Environment offset in OOB..

Net: smc911x-0

NAND read: device 0 offset 0x80000, size 0x300000

3145728 bytes read: OK Hit any key to stop autoboot: 0

Tonga2>

The u-boot settings can now be viewed by entering "printenv".

Important: After installing the uboot you have to reset your system (restart u-boot).

5.2.2.4 IP and MAC Address Setup

Configuration of the IP address of the development board and your host PC.

The board should be allocated the address 192.168.0.122 which is set by entering "set ipaddr 192.168.0.122". You have to adapt the IP addresses according to your environment. These values can be saved by entering "saveenv". You can test the correct configuration with a ping on your host PC.

>setenv ipaddr 192.168.100.121 >setenv serverip 192.168.100.120 >saveenv

If required, you have to set the MAC address:

>setenv ethaddr DE:AD:DE:AD:DE:AD

>saveenv

5.2.2.5 Configuration of the Display Parameters

To ensure that bigger displays with other timings also work with our board, the kernel must be informed of the timing-parameters, such as resolution.

>setenv videoparams video=tmpa9xxfb:19211e4c:10040cef:013f380d >saveenv

Check also chapter 8.1 Other Resolutions/Other Timings – Calculation of the Display Settings. There you can find how this parameter is calculated.

LCD Control Register

The fourth parameter of the LCD control register (LCDControl) can be included in the video params call. For the EDT Family Concept this is not necessary.

5.2.2.6 Configuration of the File System Type

You can choose between JFFS2 and UBIFS.
JFFS2 is a log-structured file system for use in flash memory devices.
UBIFS - Unsorted Block Image File System is a successor to JFFS2.

Setting for UBIFS format:

>setenv rootfs_base 'setenv rootfs \${rootfs_ubifs}'
>saveenv

Setting for JFFS2 format (Default):
>setenv rootfs_base 'setenv rootfs \${rootfs_jffs2}'
>saveenv

5.2.2.7 Splash Screen Support

A splash screen is an image that appears after a very short time to notify the user that the program is processing while the system is loading the kernel etc.

The u-boot for the TMPA9XX boards is also capable of doing splash screen before booting the Linux kernel.

There are some limitations given:

- There is only support for TFT panels at the moment.

- The splash screen has to be exactly the size and the bits per pixel as the display.
- The only format supported is BMP or compressed BMP with gzip.
- The splash screen has to be A8R8G8B8 in the case of 24bit TFTs
- The splash screen has to be R5G6B5 in the case of 16bit TFTs

Both formats can be easily generated with gimp (when saving BMP open up Advanced Options and select Format)

If you would like to use the splash, you have to use the pre-boot environment variable.

Example:

>tftp splash.bmp

>nand write \${fileaddr} splash

>setenv preboot 'nand read 0x43000000 splash;bmp display 0x43000000'

>saveenv

Erase splash screen:

>nand erase splash

5.2.2.8 Erase u-boot Environment.

>nand erase u-boot_env

This erases the whole environment variable area in the memory. After this, you have the default setting.

5.2.2.9 u-boot - NFS Server Setup

It is possible to download your application via a network. Then the target will download the data from a server (e.g. your PC) into RAM. This method allows you to test your application guickly without having to burn the flash.

In order to test your program quickly and easily, first you have to copy your root file system (tar.gz) to the nfsroot-directory of your Linux host system.

Doing this, you can archive very short turn-around cycles for debugging your application or testing your kernel as all changes are executed directly from the host and the board uses the new testing versions directly without the need of flashing everything for a new test.

Example setup NFS boot in your u-boot:

>setenv bootargs_base 'setenv bootargs console=ttyS0,115200n8 \${mtdparts} root=/dev/nfs nfsroot=192.168.100.120:/target ip=192.168.100.121 \${videoparams} ethaddr=\${ethaddr}'

>setenv bootcmd 'run bootargs_base;tftpb ulmage;bootm'

>saveenv

When you now boot your target, the complete file system will come from the NFS server.

Using the setenv bootargs_base your filesystem will come from your host system (NFS-Server).

Using the setenv bootcmd your kernel will come from your host system (tftp-Server).

When using both, your whole system (except u-boot) will be provided by your host system.

5.2.2.10 More u-boot commands

By the first start of the u-boot the command PREBOOT is put and appeals setup. Set-up looks whether mtdparts is put and then explains the following commands:

nand bad dynpart nand env.oob set u-boot_env setenv preeboot setenv setup saveenv

This is done automatically when u-boot starts the first time.

Explanaition of the commands

>nand bad

The answer in the terminal could look like this:

Device 0 bad blocks: 04380000 0d940000

The u-boot command "nand bad" lists the offsets of the bad blocks. More about "bad blocks" in chapter **3.2.1 Nand Flash Memory – Unique Characteristics**.

>dynpart

There is a new 'dynpart' command which, when executed, uses the compile time board partition sizes combined with the bad block table to generate the device-specific 'dynamic' partition table. Among other things, this table contains a partition with the name u-boot_env. This is the partition where the environment is saved! The result is stored in the mtdparts environment variable. Everything else is standard u-boot/kernel behaviour.

If you now look in the environment (printenv), you will find the new device-specific 'dynamic' partition table as below:

mtdparts=mtdparts=tmpa9x0-nand:0x00060000(u-boot),0x00020000(u-boot env),0x00300000(splash),0x00300000(kernel),0x0f980000(rootfs)

>nand env.oob set u-boot env

This command stores the position of the environment partition in the out-of-band (OOB) bytes of the first page which is always fine.

Why do we do this? The u-boot environment is traditionally stored at a fixed location within the NAND flash. This is not acceptable, since it could be a factory-set bad block. The solution is to put the in-flash address of the environment into the out-of-band (OOB) area of the first block (the one which is guaranteed to be good).

5.2.2.11 What to do if the boot loader has been flashed incorrectly

By setting the magic word, booting is initiated in the first sector of the NAND flash and the internal boot loader is activated. The set boot option prevents initialisation of the DDR RAM and, therefore, prevents the described flash process. Should the u-boot not start due to an incorrect update, it is not possible to flash the application using the normal tool.

The update script in the u-boot allows the initialisation of the DDR RAM and loading of the application in the RAM. To do this, please open the Segger J-Link commander. Copy the contents of the whole script by pressing "STRG+C" and paste the contents by pressing "STRG+V".


```
Speed adaptive
g
halt
w4 0xf005000c, 0x00000007
w4 0xf0050010, 0x00000065
w4 0xf005000c, 0x00000087
w4 0xf0050008, 0x00000003
w4 0xf0050004, 0x00000000
w4 0xf0050054, 0x00000040
w4 0xf080c424, 0x000000fd
w4 0xf080c428, 0x00000002
w4 0xF0020260, 0x3
w4 0xf4310014, 0x4
w4 0xf4310018, 0x1
w4 0xf431001c, 0x2
w4 0xf4310020, 0xa
w4 0xf4310024, 0xa
w4 0xf4310028, 0x13
w4 0xf431002c, 0x10a
w4 0xf4310030, 0x13
w4 0xf4310034, 0x2
w4 0xf4310038, 0x2
w4 0xf431003c, 0x1
w4 0xf4310040, 0xa
w4 0xf4310044, 0xc
w4 0xf4310048, 0x14
w4 0xf431000c, 0x10012
w4 0xf4310304, 0x58
w4 0xf4310010, 0xa60
w4 0xf4310200, 0x000140FC
w4 0xf4310204, 0x000180FF
w4 0xf4310208, 0x000180FF
w4 0xf431020c, 0x000180FF
w4 0xf4310008, 0xc0000
w4 0xf4310008, 0x00000
w4 0xf4310008, 0x40000
w4 0xf4310008, 0x40000
w4 0xf4310008, 0x80032
w4 0xf4310008, 0xc0000
w4 0xf4310008, 0xa0000
w4 0xf4310100, 0x5
w4 0xf4310104, 0x5
w4 0xf4310108, 0xb
w4 0xf431010c, 0x5
w4 0xf4310110, 0x5
w4 0xf4310114, 0x5
w4 0xf4310004, 0x0
w4 0xf00a0050, 0x1
w4 0xf4311014, 0x4afaa
w4 0xf4311018, 0x1
w4 0xf4311010, 0xc00000
loadbin D:\u-boot.bin,0x40300000
loadbin D:\u-boot_nand_tonga2.bin,0x40600000
setpc 0x40300000
```


Afterwards, the flash has to be programmed. To do this, switch to the terminal program and enter the following commands:

nand erase 0x0 0x60000 nand write 0x40600000 0x0 0x60000

5.3 Standard Application (IAR Compiler)

In order to recompile the projects, you need the IAR embedded workbench. You will find a trial version on the web at www.IAR.com.

5.3.1 Debugging the Application (IAR Compiler)

An IAR project for direct use without an operating system can be found on the CD which is included in the delivery. The Segger J-Link lite has to be connected to the TMPA900 CPU module to debug. The work space is set to "DDR_Debug" for debugging. The program's normal functions can now be tested.

5.3.2 Make a Release for Flash (IAR Compiler)

Stop the current debugging session in the IAR embedded workbench. Select the release NAND configuration and rebuild the sample application. You will find a release file in the project folder NAND_Release\Exe.

5.3.3 Flashing the Application (No Linux)

There is a **download tool by Segger** on the CD in the folder Segger_Download_tool or you can find the current version on the Segger homepage www.segger.com.

This tool set restores your GLYN graphic base board with the TMPA900 CPU module to a defined state. It restores u-boot to loading after start up and downloads an application to be run by u-boot after a short start up delay.

The tool set can be used together with IAR EWARM to automatically download an output into NAND with u-boot. u-boot and the application starts after a short delay.

To use the tool set independently to download a binary together with u-boot, please make sure that you rename your binary to "application.bin" and put it into the same folder as the toolset. Please be aware that the tool set expects the vectors to be located at addr. 0x40600000.

To program your image independently, simply start the batch file "Download.bat".

Flashing without Download Tool:

The application must be copied from the NAND flash to a free RAM address behind the boot manager before starting. To do this, it is copied to the RAM of the TMPA900 CPU module via the TFTP server via Ethernet. Enter the following commands:

tftp 0x40600000 GettingStarted.bin

The program is copied to the external DDR RAM.

nand erase 0x80000 0x200000

The NAND flash is deleted with this command. The first value is the start address; the second value states the size of the area.

nand write 0x40600000 0x80000 0x200000

This flashes the program which is shown in the DDR RAM from address 0x40600000 onwards to the NAND address 0x80000. The size of the program is 0x200000.

Auto copy und start application

bootcmd nand read 0x40600000 0x80000 0x200000 \;go 0x40700000

During start up, the program is copied from the NAND address 0x080000 to the RAM address 0x40600000 (File size: 0x200000). The application is started from address 0x40700000 (reset vector).

saveenv

All changes are saved and the application starts automatically after resetting.

5.3.4 Getting Started with SEGGER Evaluation Software and IAR

You can find a complete evaluation version of the Segger software in the folder Segger Demo on the CD.

This evaluation package has been designed to provide a complete, easy-to-use software package for the TMPA900 CPU Board and IAR.s embedded workbench for ARM (target compiler). It allows you to easily check the target hardware, the target compiler and Segger software components. This evaluation process typically does not take a long time since the software can be easily recompiled and downloaded to the target.

Software Components in the Package

emFile

emFile is SEGGER's embedded file system that can be used on any media for which you can provide basic hardware access functions. emFile is a high-

performance software that has been optimised for speed, versatility and memory footprint. emFile documentation can be found at "Doc\UM02001_emFile.pdf".

emWin

emWin is SEGGER's embedded Graphical User Interface (GUI) using a feature-rich API and providing an efficient, processer and LCD controller-independent GUI for any application that operates with a display. emWin documentation can be found at "Doc\UM03001 emWinUser.pdf".

emboss

embOS is SEGGER's embedded priority-controlled multitasking system. It is designed to be used as an embedded operating system for the development of real-time applications and has been optimised for minimum memory consumption in both RAM and ROM, as well as high speed and versatility. embOS documentation can be found at "Doc\UM01001_embOS_Generic.pdf" and "Doc\UM01002_embOS_ARM_IAR.pdf".

embOS/IP

embOS/IP is SEGGER's embedded TCP/IP stack. It is a CPU independent, high-performance TCP/IP stack that has been optimised for speed, versatility and small footprint. embOS/IP documentation can be found at "Doc\UM07001_embOSIP.pdf".

emUSB

emUSB is SEGGER's embedded USB stack. It is written in ANSI C and features bulk communication as well as device classes such as MSD, CDC or HID. emUSB documentation can be found at "Doc\UM09001_USBStack.pdf".

Eval Limitations

The included eval versions of the different components of the eval package have the following limitations:

Component	Description
emFile	The eval version of the emFile libraries can only handle
	one open file at any given time.
embOS	The eval version of the embOS libraries run without a time
	limit with a maximum of three tasks. If your application
	creates more than three tasks, embOS stops after a time
	limit of 15 minutes.
emOS/IP	IP The eval version of the embOS/IP libraries have a time
	limit of 15 minutes on the connection.
emUSB	The eval version of the emUSB libraries have a time limit
	of 15 minutes on the connection.
emWin	The eval version of the emWin library shows an evaluation
	notification before the actual application starts.

Your use of the eval package or of any part included in the project indicates your

acknowledgement of and agreement to the SEGGER eval software license. License.txt is located in the root directory of the eval package.

For details look also the Segger application note in the folder Segger_Demo - AN00002_GettingStartedWithSeggerEvalSoftwareAndIAR.pdf .

6.0 Linux for TMPA900 CPU board

Important Preliminary Remark:

A precompiled Linux kernel comes with the board. If you have your own base board, the right way is to make your own (custom) kernel.

Example: You do not need "SD over SPI Driver" because no SD card is used in your design. In this case, our kernel would constantly show an error message in the terminal window. So, you should take the "SD over SPI Driver" out of the kernel.

To optimise the efficiency of the TMPA900 CPU boards, we always advise a custom kernel:

- For performance reasons:
- More free memory
- Quicker boot
- Less basic load (e.g., MMC over SPI is polled)

First steps in chapter: 6.5 Linux Kernel Build

Where to find:

Linux kernel sources:

http://git.labs.kernelconcepts.de/?p=topas.git;a=summary

First steps with the git server in Appendix C: KC Labs Public Git Server

Demo file systems, kernel binary, u-boot binary - configured for the Glyn graphics base board:

http://www.mucross.com/downloads/tonga-linux/

Our Linux Cross Compiler and Root File System is based on μ Cross, a modern Linux based software distribution for embedded and mobile devices. The μ Cross package is a product from kernel concepts (www.kernelconcepts.de).

More in chapter 6.9 μCross – Linux Tool Package.

6.1 Major Components of a Linux System

A Linux system, be it on a main frame or an appliance, consists of three major parts:

- Boot loader (on a PC the BIOS)
- Linux kernel
- Root file system

There are plenty of ways to combine and create all this and each part has its quite specific features and effect on the behaviour of the system. As a general rule, you can assume that a Linux system starts up in the following way:

- 1. CPU power-on reset loads end executes boot loader.
- 2. Boot loader initialises some required hardware and then loads Linux kernel binary image and jumps to load address.
- 3. Linux kernel initialises its drivers and thus the hardware, then mounts the root file-system and finally executes the first user space program, which is either /sbin/init or /bin/sh.

So the **init** process is always the first process started. This becomes the root of the process tree and triggers all other processes.

6.2 Flashing the Linux Application

<u>Note:</u> The start address or size depends on the u-boot used and the matching kernel. These values refer to the versions of August 2010.

It is assumed that the current version of the boot manager as well as the TFTP – server have already been installed. You will find a consistently updated kernel on our web page (http://www.toshiba-mikrocontroller.de/) and the file system on the CD in the subdirectory KernelConcepts.

Press RESET on the base board. The following commands are re-entered via a serial terminal (115200/8/no/1/no Flow).

Install kernel:

>tftp ulmage
>nand erase kernel
>nand write \${fileaddr} kernel

Install Rootfs (max size ~60MB):

>tftp mucross-1.0-x11-gtk-qt4-image-tonga2-summary.jffs2 >nand erase rootfs >nand write.jffs2 \${fileaddr} rootfs \${filesize}

6.3 Flash Layout TMPA900-CPU-BOARD

Partition	Start	Length (Hex)	Siz	ze
Bootblock + u-boot	0x0000000	0x60000	384	kBytes
Environment	0x00060000	0x20000	128	kBytes
Splah Screen Partition	0x00080000	0x300000	3	MBytes
Linux Kernel	0x00380000	0x300000	3	MBytes
File System	0x00680000	0xFC80000	249.5	MBytes

<u>Note:</u> The start address or size depends on the u-boot used and the matching kernel. In the current version (August 2010) these sizes are dynamic (see u-boot command dynpart).

6.4 Installation Linux Tool chain TMPA900 CPU board

The cross tool chain is shipped as a compressed Unix tar archive and is suitable as-is for the most current Linux x86 32-bit hosts. Tested host distributions include recent Debian and Ubuntu releases.

Unpack the archive to the root (/) directory of the host work station. Alternatively, a virtual machine such as VMware or VirtualBox with a Linux installation can be used.

Youcan find the current tool chain at:

http://www.mucross.com/downloads/tonga-linux/mucross-1.0-i686-linux-armv5te-linux-gnueabi-toolchain-gtk-qt4.tar.bz2

The SDK files can be found in the directory /opt/mucross/<arch>.

6.5 Linux Kernel Build

First, there is a ready-to-use kernel on the CD – Ulmage. But sometimes you have to rebuild the kernel according to your needs. The main reason is to optimise the kernel to your environment (hardware and usage patterns). E.g. I2C1 and UART2 have the same port pins – for this you have to choose what peripheral you want to use.

First you have to download the kernel source:

http://git.labs.kernelconcepts.de/?p=topas.git;a=summary

6.5.1 Linux Kernel Source Tree

The Linux kernel source code is organized as a tree. The following list shows the root of our kernel tree as with version 2.6.x.

1			
.gitignore	.mailmap	COPYING	CREDITS
Documentation	Kbuild	MAINTAINERS	Makefile
README	README.kc	REPORTING-BUGS	
arch	block	crypto	drivers
firmware	fs	include	init
ipc	kernel	lib	mm
net	samples	scripts	security
sound	tools	usr	virt

Below you will find a description of some important folders.

/arch

The arch/ drawer contains the support for the different platforms supported by Linux. Any source file having a platform dependency can be found here. Especially for our board you find the **tonga.c** ARM architecture in the **mach-tmpa910 folder for our board**.

/drivers

The drivers/ directory host the device drivers of the Linux kernel. The various subfolders are sorted according to the different device categories. When writing a new device driver, start here by copying a working one that is similar to the function of your new driver.

E.g. In this folder you can find the video folder with the frame buffer driver for our board -> / drivers / video / tmpa910 fb.c

/fs

This drawer includes all the file system related functionality of the Linux kernel. It contains the core functions and the specific support files for the different file systems.

/include

This is the header file drawer of Linux. All header files needed for kernel compilation can be found here. A special case is the asm/ subfolder, which gets replaced by a symbolic link to asm-arm/ if using ARM as the target platform.

/init

This directory contains the main initialisation (init) code of the Linux kernel. This also includes the mounting of the root file system and the start of the init process.

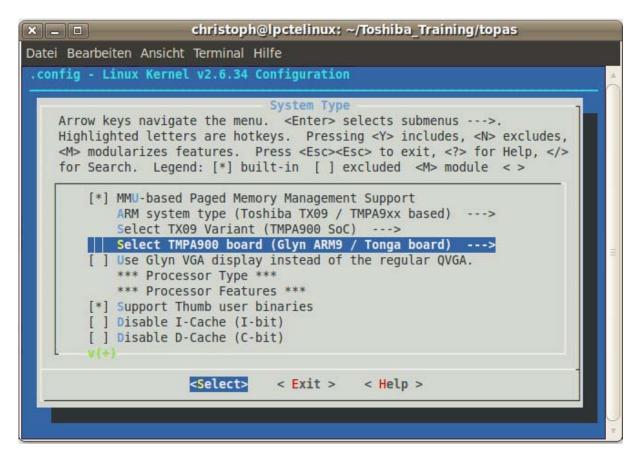
/kernel

At kernel/ all parts of the kernel core functions are stored. These parts normally use plain 'C' code. Any platform specific code, sometimes written in assembly language, can be found at arch/.

/net

This drawer hosts the networking core support of the Linux kernel. The various subfolders include TCP/IP support and other common network functions.

6.5.2 Linux Kernel Configuration

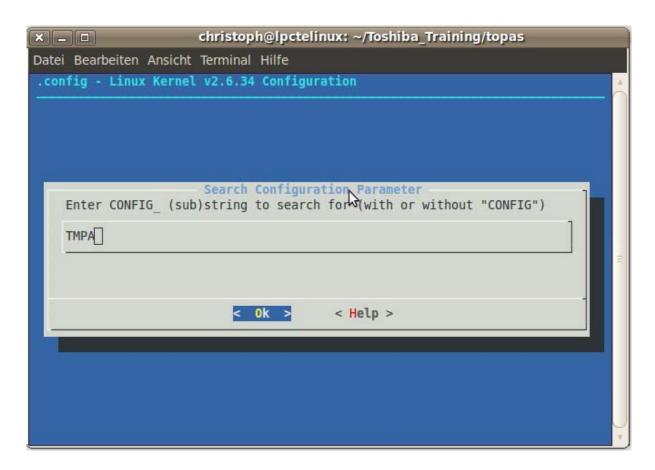

Configuration of the kernel means enabling or selecting certain features from the feature pool of the kernel. The kernel build uses a huge set of conditional compile switches to include or exclude specific features. Some of the selections are mandatory, like choosing the target platform. Others are optional, like including a certain set of device drivers. Finally, some of the selections create dependencies which must be resolved prior to compiling the kernel which has just been configured. To ease the setting of hundreds of different compile switches, a menu driven configuration system is provided.

Console Configuration Method

The menuconfig way of configuring a kernel is a console-based program that offers a way to move around the kernel configuration using the arrow keys on the keyboard.

To start this configuration, first you have to copy the **defconfig** from **arch/arm/configs/ tonga_defconfig** to **.config**

make ARCH=arm CROSS_COMPILE=/opt/mucross/arm/bin/arm-mucross-linux-gnueabi- menuconfig


Kernel features can either be compiled into the kernel or alternatively provided by a code module that can be loaded at kernel run-time. The method of providing kernel features as modules is commonly found with mainstream platforms. To avoid the need of compiling features into the kernel, making the kernel much bigger, a module approach is implemented here. The basic kernel just uses a minimum set of features and loads others on a dynamic basis.

Embedded systems mostly have well-defined interfaces – such as on-board or built-in devices, allowing the selection of these features at compile time.

The menu configuration of the kernel reflects these differences as follows:

- [] empty bracket at the feature location disables the feature
- [*] the asterisk selects the feature as a built-in feature
- [M] the letter 'M' selects the feature to be compiled as module

You can also search in the kernel configuration. Press "Shift" and "7".

6.5.3 Compiling the Linux Kernel

After successfully configuring the kernel features, the kernel needs to be compiled. This is accomplished by simply typing 'make' on the command line. Using `make` as the command will compile all parts of the kernel.

In order to compile a kernel for another platform, the desired architecture tool chain has to be given in the arguments.

- ARCH specifies the architecture. Each supported one is located in each entry of the directory arch/. For ARM, we will use <u>"arm"</u>
- CROSS_COMPILE specifies the tool chain to be used. For example: "arm-mucross-linux-gnueabi-"

Make examples:

- make ARCH=arm CROSS_COMPILE=/opt/mucross/arm/bin/arm-mucrosslinux-gnueabi eabi- modules
 - Only selects the modules for compiling. You have to copy the build modules to your root file system.
- make ARCH=arm CROSS_COMPILE=/opt/mucross/arm/bin/arm-mucrosslinux-gnueabi- ulmage

A kernel, adapted for u-boot of the current configuration

Important: To start compiling, first you have to copy the **defconfig** from **arch/arm/configs/ tonga_defconfig** to **.config**

6.5.4 Installing the Linux Kernel

After compiling the Linux kernel, it must be installed onto the target system. Therefore, we use our u-boot.

First copy the ulmage into your TFTP folder.

Press RESET on the base board. The following commands are re-entered via a serial terminal (115200/8/no/1/no Flow).

Install Kernel:

>tftp ulmage >nand erase kernel >nand write \${fileaddr} kernel

6.6 Linux File System

The following chapter is a short introduction to Linux for users who are using this operating system for the first time. There is a large amount of literature on this subject one can fall back on.

LINUX systems use a unified file system. Other than using different drive letters to identify drives and partitions, LINUX systems use a single starting point for the file system. This single point is marked with the '/' (slash). It is the starting point or 'root' of the file system. In this tree one can navigate with the command cd. It is always possible to type the path to a list or a file as absolute or relative to navigate and select a program.

There are no disk drive letters as known from other OS. Thus, the kernel (the real operating system) and the programs always "know" where certain lists (and with them the required files, like configuration files, libraries, program modules...) and certain resources are to be found.

After successful installation of the Linux kernels and a file system, you can connect to a serial console with the Linux board, e.g. the console answers after installation of the example

mucross-1.0-x11-gtk-qt4-image-tonga2-summary.jffs2

as follows:

Mucross Linux by kernel concepts http://www.mucross.com mucross@kernelconcepts.de Mucross 1.0 tonga2 ttyS0

Created with Imagetool v1.0 tonga2 tonga2 login:

Type **root** followed by twice **cd..** . Now you are in the root file system. With the command **Is** the structure of the system is shown.

The Root File System

The following files (or symbolic links to files) can be found in the root file system:

/ bin/	dev/	home/	media/	proc/	sys/	usr/		
boot/	etc/	lib/	mnt/	sbin/	tmp/	var/		
/bin	system shells standard too Is list direc cp copy file mv move fil	cp copy files mv move files						
/boot	contains the	LINUX kernel an	d boot loader					
/dev	device driver							
/etc	contains the	LINUX system c	onfiguration fi	les.				
/home	contains the	LINUX system u	ser home dire	ectories				
/lib	directory con	tains the LINUX	system library	y files				
/media	Mounting po	int for temporary	media.					
/mnt	optional, rep	resents the LINU	X system ger	neric mount	point.			
/proc	directories w	nother special dr ithin this drawer s. These files are	are dynamica	lly created b	y the kerne	el and its		
/sbin		n administrator's und at /sbin are u				nal users.		
/sys	mounting po	mounting point for temporary media						
/tmp	directory con	tains temporary	files of the cu	rrent system	1.			
/usr	contains the	user binaries - p	rograms - of t	he LINUX S	ystem.			
/var		a contains 'living'			System log	files		

(/var/log/messages) or printer spooler data.

It makes sense to keep the root directory as small as possible. However, in general the principle is that application programs should not put directories in the root directory, but should revert to the given file structure

6.7 Small C-Examples under Linux

6.7.1 Linux "Hello World" Example

This section shows how to compile, download and run a simple "Hello, World" Linux application on the TMPA900-CPU-Board. First open an editor and write the following small program:

```
#include <stdio.h>
int main (int argc, char **argv)
{
    printf("Hello World!\n");
return 0;
}
```

Now that you have created a C "source" file - the human readable source for your program - it needs to be "compiled", i.e. turned into machine language that your CPU can actually use. There are two basic ways you can do that: use "gcc" (or "cc", which is usually the same thing) or "make".

First we want compile this for your "Host" PC – means compiling for x86.

\$ gcc -O2 -Wall -o hello-host hello.c

```
Now look in the folder with $ Is -I -> -rwxr-xr-x 1 user user 7149 2010-08-16 16:32 hello-host
```

With the command file we can see what kind of file hello-host is. You see it is an executable one.

\$ file hello-host

hello-host: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.6.15, not stripped

file is a standard program for determining the type of data contained in a computer file.

Now let's start the program:

\$./hello-host

Hello World!

Now we want to compile it for the ARM architecture:

\$./opt/mucross/arm/environment-setup

\$ arm-mucross-linux-gnueabi-gcc -O2 -Wall -o hello-arm hello.c

Now we have made a program for the target

\$ file hello-arm

hello-arm: ELF 32-bit LSB executable, ARM, version 1 (SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.6.16, not stripped

Copy to target:

\$ scp hello-arm root@"YOUR_TARGET_IP":

Run on target:

root@tonga2:~# ./hello-arm Hello World!

Working with Network Disk:

Copy the program you wish to test to the /nfs_exchange/ directory. For example, the previously compiled helloworld.

> cp ~/src/simple/helloworld/helloworld /nfs exchange/

6.7.2 IO-Toggle – Example for an easy accesses to the peripherals

First a short explanation of some needed commands:

Command system()

To begin another program from an executable program, the function **system ()** is available to you. Syntax:

#include <stdlib.h>
int system(const char *kommandozeile);

Explanation: System () hand over a command line as a string. If the call could be explained successfully, the function returns a value incomparably to 0, otherwise 1. For the string you can give everything what is also permitted in the command line.

Echo

The echo command displays a message on the screen and is primarily useful for programmers writing shell scripts. But anyone can use echo to show the value of environment variables.

Here is the Listing of the small program:

```
#include <stdio.h>
#include <unistd.h>

void main(void)
    {
        system("echo 8 >/sys/class/gpio/export");
        system("echo out >/sys/class/gpio/gpio8/direction")

        while (1)
    {
        printf("Switching PB0 on\n");
        system("echo 1 >/sys/class/gpio/gpio8/value");
            sleep(1);
            printf("Switching PB0 off\n");
        system("echo 0 >/sys/class/gpio/gpio8/value");
            sleep(1);
            sleep(1);
            }
}
```

Compile it for the ARM architecture:

\$./opt/mucross/arm/environment-setup

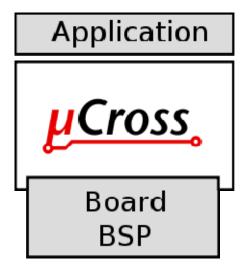
\$ arm-mucross-linux-gnueabi-gcc -O2 -Wall -o gpio_switch_arm gpio_switch.c

Copy to target or Network Disk -> Chapter 6.7.1.:

Run on target: root@tonga2:~# ./ gpio_switch_arm

Now PIN PB0 should toggle.

6.8 μCross – Linux Tool Package


The file system and tool chain come from the µCross package. You can buy this package from kernel concepts - www.kernelconcepts.de

More information about µCross at: www.mucross.com

Why µCross?

 μ Cross is a complete package to enable rapid project development. It contains a wide selection of pre-compiled packages that suit almost any requirements and is complemented by a matching cross development tool chain and SDK. A distinguishing feature of μ Cross is the support for graphical user interface (GUI) development using e.g. GTK+ or Qt - QT/embedded being supported as well. With tools known from desktop Linux, such as IDEs, user interface builders and debugging tools, an experienced GUI developer can start to develop embedded GUI applications within the shortest possible time.

μCross can be seen as the glue layer between the BSP and the customers specific application:

 μ Cross complements the BSP that comes with the hardware board. Only the hardware specific parts of the BSP are needed, i.e. boot loader, kernel and possibly specific drivers. Everything else is supplied by μ Cross.

Components

 μ Cross is based on a set of well-tuned and tailored components which form a complete and stable solution:

- Cross tool chain (GCC)
- SDK including GUI development, GTK+, Qt, Qt/embedded and DirectFB
- Root file system with package management
- Package feeds the source for the pre-compiled binary packages which are
 used to build the root file system. Feeds can also be used as a source for postdeploy installations, more than 6000 packages are available
- Updates a regular release schedule with new releases every six months
- · Broad support offers please enquire

Services

- Complete development and runtime environment for embedded and mobile Linux devices
 - μCross tool chain: development tools for the target platform, consisting of compilers (C / C++), assembler and linker
 - $_{\circ}$ $\;\mu \text{Cross-SDK:}$ complements the tool chain with libraries for application and GUI development
 - o Documentation: how to integrate the μ Cross-SDK into standard IDEs such as Eclipse, Qt-Creator, Anjuta/Glade
 - μCross-Runtime: all packages are available both in development and runtime versions
- Wide range of packages
 - Building blocks: choose what is needed, leave out the rest
- Stable versions:
 - o Once deployed, every version of μCross stays reproducible
 - So does the source
- µCross target image builder creates the firmware flash image from the building blocks - on your development host
- Continuously improved a new version every six months
- We support customer versions of µCross:
 - o Complete customized version along with every main release
 - Or, with the customers approval, inclusion of a (hardware specific) subset into the main releases

μCross Target Image Builder - μTIB

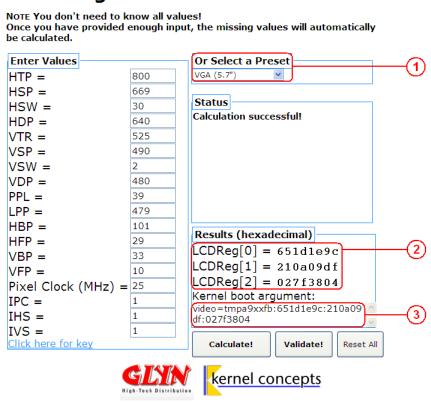
Features

- GUI
- Easy to use
- Creates file systems with a minimum of effort
- File system definition independent from target device (define once - deploy on multiple devices)
- Fast operation 1-2 minutes to build a file system
- Human readable and easy to modify device and file system descriptions
- Access to multiple configuration parameters
- Support for file system variants (e.g. debug and release)
- Output formats: TAR archives, JFFS2 images and UBIFS images
- · Includes arbitrary files
- Runs arbitrary commands on boot
- Local operation possible (no network connection required)

7.0 Installing the Display with the Glyn Graphic Base Board

3,5", 4,3", 5.0", 7.0"

5,7"

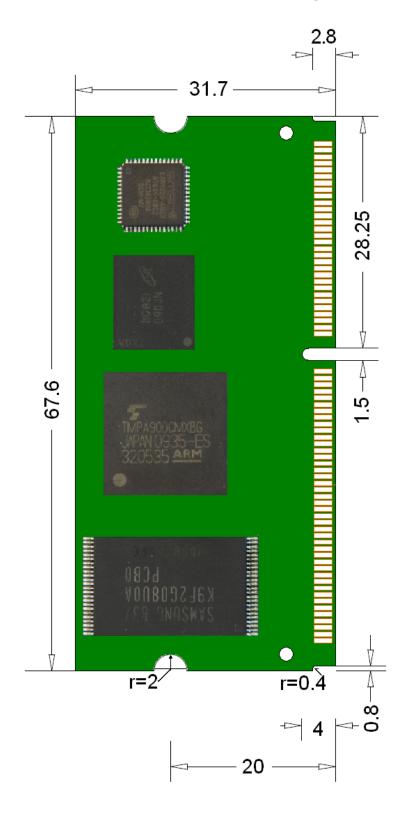


7.1 Other Resolutions/Other Timings – Calculation of the Display Settings

To ensure that bigger displays with other timings also work with our board, the kernel must be informed of the parameters, such as resolution. For this, we have a convenient tool available on our project homepage.

http://www.mucross.com/downloads/tonga-demo/display-settings/

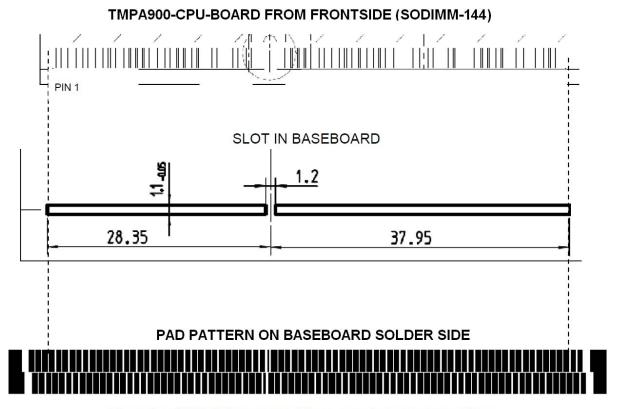
Register-Value-Generator


Please type in the timings of your display. For our displays of the EDT – Family Concept all parameters are given. You can find them at "Or Select a Preset "1. After all timings have been entered, press the button "Calculate" and then all required register values will be calculated. The calculated values can be found under 2. Details of these registers can be found in the controller manual TMPA900CMXBG. Transfer the "kernel boot argument 3" to the u-boot environment:

>setenv videoparams 'video=tmpa9xxfb:19211e4c:10040cef:013f380d'

Fnd with saveenv!

8.0 Mechanical Specifications (Formating)



8.1 Soldering the TMPA900-CPU-Board – No Connector

Mechanical Specifications (Formating)

Recommendations for Baseboard Slot for TMPA900-CPU-Board.

Dimension of PAD-Pattern: copper 0.6mm, space between copper 0.2mm

- Pads are intentionally made larger than the slot allows and will be cut by the PCB manufacturer during milling to prevent large gaps
- Additional PADS on both sides are needed to get a controlled, continuous solder flow.
- The radius for the milling tool of the slot is to be optimized. Two subsequent millings are recommended: one with 1.2mm and one with 0.8mm to get an accurate fit of the board without play.

These are recommendations only and must be optimized for individual solder stations.

Appendix A: Available u-boot Commands

? - alias for 'help'

bootm

base - print or set address offset

boot - boot default, i.e., run 'bootcmd' bootd - boot default, i.e., run 'bootcmd'

- boot application image from memory - boot image via network using BOOTP/TFTP protocol bootp

chpart - change active partition

- memory compare cmp

coninfo - print console devices and information

ср - memory copy

crc32 - checksum calculation

 boot image via network using DHCP/TFTP protocol dhcp

dynpart - dynpart - dynamically calculate partition table based on BBT

- echo args to console echo

editeny - edit environment variable

exit - exit script

false - do nothing, unsuccessfully

fsinfo - print information about filesystems

fsload load binary file from a filesystem image

- start application at address 'addr' go help print command description/usage

iminfo - print header information for application image

imxtract extract a part of a multi-image

- return true/false on integer compare itest

loadb - load binary file over serial line (kermit mode)

loads - load S-Record file over serial line

- load binary file over serial line (ymodem mode) loady

- infinite loop on address range loop - list files in a directory (default /) ls

md - memory display

mdc - memory display cyclic

mm - memory modify (auto-incrementing address)

mtdparts - define flash/nand partitions

mtest - simple RAM read/write test

mw - memory write (fill)

mwc - memory write cyclic

nand - NAND sub-system

nboot - boot from NAND device

nfs - boot image via network using NFS protocol

nm - memory modify (constant address)

printenv - print environment variables

rarpboot - boot image via network using RARP/TFTP protocol

reset - Perform RESET of the CPU

run - run commands in an environment variable

saveenv - save environment variables to persistent storage

saves - save S-Record file over serial line

setenv - set environment variables

showvar - print local hushshell variables

sleep - delay execution for some time

source - run script from memory

test - minimal test like /bin/sh

tftpboot - boot image via network using TFTP protocol

true - do nothing, successfully

ubi - ubi commands

version - print monitor version

Appendix B: Ordering Information

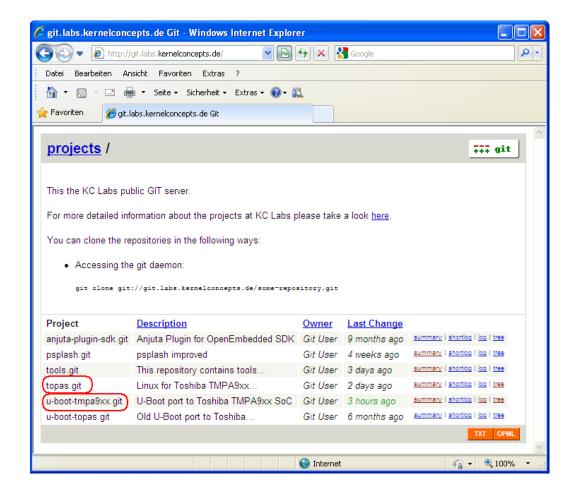
Starterkit: TMPA900-CPU-BOARD-Starter

The baseboard of the starter kits comes in a format 100 x 160 mm so it can be inserted into standard cases. Connection possibilities on the board are Ethernet, USB device and host, SD card (SPI & SD host) and UART. Another component of the starter kits is a QVGA display with touch screen.

- 1xTMPA900 CPU board
- 1xGlyn graphic base board
- 1xSegger Jlink ARM Lite
- 1xQVGA-TFT EDT with touch
- 1xEthernet cable
- 2xUSB cable
- 1xserial cable
- 1xpower supply
- Software (partial eval versions)

CPU Board: TMPA900-CPU-BOARD

- - Processor TMPA900CMXBG, 200 MHz
 - RAM 64 MB DDRRAM
 - ROM 256 MB NAND Flash
 - Power supply single 3.0V to 3.6V
 - Size SO-DIMM 144
 - Temp. range -20°C..85°C
 - 10/100Mbps Ethernet (MAC+PHY)
 - High speed USB 2.0 device (480Mbps)
 - Full speed USB host 2.0 (12Mbps)
 - LCD controller
 - Interfaces: e.g. UART, SD-CARD, I2C, PWM, keypad, digital audio (I2S), 4/5 wire touch screen


Glyn GmbH & Co KG – TMPA900-CPU-Board Manual V1.7

Appendix C: KC Labs Public Git Server

You can find the sources of our Linux package and the u-boot on the KC Labs public GIT server:

http://git.labs.kernelconcepts.de/

Installing Git on Linux:

If you want to install Git on Linux via a binary installer, you can generally do it through the basic package management tool that comes with your distribution. E.g. on a Debian-based distribution like Ubuntu, try apt-get: \$ apt-get install git-core

Important: For the KC Labs public GIT server you have to open TCP port 9418.

If the port is not open, you will get an error message: fatal unable to look up git.kernelconcepts.de (port9418) (Name or service not known)

Accessing the GIT daemon:

You can clone the repositories in the following ways:

Kernel:

git clone git://git.labs.kernelconcepts.de/topas.git

U-Boot:

git clone git://git.labs.kernelconcepts.de/u-boot-tmpa9xx.git

Updates from the GIT server:

Once you have downloaded (clone), boot loader and/or kernel – you can update your sources easily -> go into the source folder and type in:

git pull

```
christoph@lpctelinux: ~/Toshiba_Training/u-boot-tmpa9xx
Datei Bearbeiten Ansicht Terminal Hilfe
CHANGEL OG
                                             System.map
CHANGELOG-before-U-Boot-1.1.5 MAINTAINERS
                                             tools
common
                               MAKEALL
                                             u-boot
config.mk
                               Makefile
                                             u-boot.bin
COPYING
                               mkconfig
                                            u-boot.lds
CREDITS
                               nand_spl
                                             u-boot.map
disk
                               nand_tmpa9xx u-boot nand tonga2.bin
doc
                                             u-boot.srec
                               net
christoph@lpctelinux:~/Toshiba Training/u-boot-tmpa9xx$ qit pull
remote: Counting objects: 27, done.
remote: Compressing objects: 100% (15/15), done.
remote: Total 15 (delta 12), reused 0 (delta 0)
Unpacking objects: 100% (15/15), done.
From git://git.labs.kernelconcepts.de/u-boot-tmpa9xx
   078b2d6..d663128 master
                                -> origin/master
Updating 078b2d6..d663128
Fast-forward
 Makefile
                                        12 ++++++++++
 board/tmpa9xx/config.mk
                                         8 +++++++
 board/tmpa9xx/tmpa9xx.c
                                         2 +-
 drivers/video/tmpa9xx fb.c
                                         4 ++--
 include/configs/tonga2_sd_no_eth.h |
                                         8 ++++-
 5 files changed, 26 insertions(+), 8 deletions(-)
christoph@lpctelinux:~/Toshiba_Training/u-boot-tmpa9xx$
```

If necessary: git reset --hard

Snapshots

The major difference between Git and any other VCS (subversion and friends included) is the way Git thinks about its data. Conceptually, most other systems store information as a list of file-based changes.

Git doesn't think of or store its data in this way. Instead, Git thinks of its data more like a set of snapshots of a mini file system. Every time a new project state (u-boot / Kernel) is stored, it basically takes a picture of what all the files look like at that moment. To be efficient, if files have not changed, Git doesn't store the file again—just a link to the previous identical file it has already stored.

So you can also download a snapshot – for this you <u>don't</u> have to install GIT. But without GIT you have to download the whole project again every time something changes.

If you now click on snapshot, you can download the snapshot as a tar archive.

Documentation:

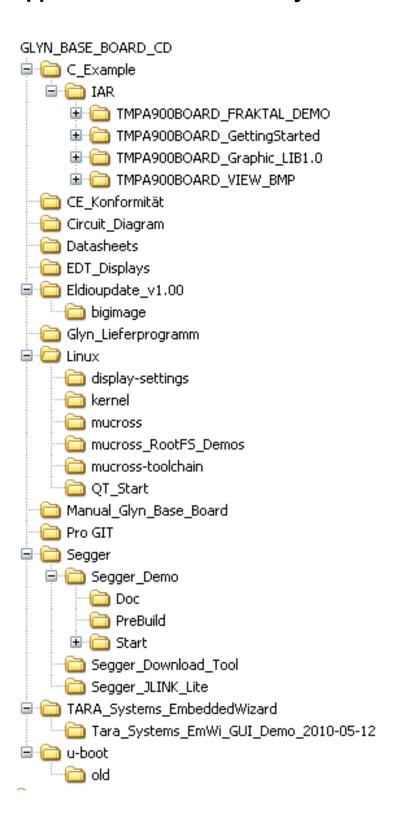
Details about Pro Git in the book from Scott Chacon on our CD (folder Pro Git) or at:

http://labs.kernelconcepts.de/downloads/books/Pro%20Git%20-%20Scott%20Chacon.pdf

Appendix D: Literature and References

This Appendix lists documents and links, which we think may be useful to gain deeper understanding of technical details.

Field	Title	Comments
Hardware	User Manual TOSHIBA Original RISC 32-Bit Microprocessor ARM Core Family TMPA900CMXBG	Detailinformation about the TMPA900CMXBG and his peripherals. It is publicly available from Toshiba (www.toshiba-components.com)
Hardware	User Manual LAN9221/LAN9221i High Performance 16-bit NON-PCI 10/100 Ethernet Controller with Variable Voltage I/O	Detailinformation about the LAN9221/LAN9221i. It is publicly available from SMSC (www.smsc.com)
Hardware	User Manual WM8983 Mobile Multimedia CODEC with 1W Speaker Driver	Detailinformation about the Soundchip on the Starterki. It is publicly available from Wolfson (www.wolfsonmicro.com)
Hardware	Manual Samsung Flash Memory K9F2G08UXA	Detailinformation about the Nand-Flash on the CPU Board. It is publicly available from Samsung (www.samsung.com)
Hardware	Manual Samsung DDR RAM 32Mx16 Mobile DDR SDRAM	Detailinformation about the DDR RAM on the CPU Board. It is publicly available from Samsung (www.samsung.com)
Hardware	Sonitexx J19154-144	Drawing of Sonitexx J19154-144 SODIMM-144 Socket
Hardware	FPC Series ZIF for FFC / FPC Connector 0.5mm Pitch 90° SMT	Drawing of Displayconnector on the Starterkit from Yamaichi Electronics
Hardware	TFT Family Concept Compatible and Flexible - A cooperation between Glyn and EDT	Information about TFT Familyconcept. It is publicly available from Glyn (www.glyn.com)
Tools	SEGGER J-Link / J-Trace User's Guide.	This document gives information about using the SEGGER J-Link / JTrace ARM. It is publicly available from SEGGER (www.segger.com).
Software	embOS for ARM and IAR Embedded Workbench	This document gives information about using embOS for IAR EWARM. It is publicly available from SEGGER (www.segger.com).
Software	embOS/IP User Guide	This document gives information about using the SEGGER IP stack. It is publicly available from SEGGER (www.segger.com).
Software	User's and reference manual for emUSB	This document gives information about using the SEGGER USB stack. It is publicly available from SEGGER (www.segger.com).
Software	emFile User's Guide	This document gives information about using the SEGGER embedded filesystem. It is publicly available from SEGGER (www.segger.com).
Software GUI	User's and reference manual for emWin	This document gives information about using the SEGGER GUI software. It is publicly available from SEGGER (www.segger.com).


Note: Components on the board can change without notice!

Field	Title	Comments
Software Linux	μCross – The Innovative Distribution	This document gives information About µCross Linux based software- distribution. It is publicly available from kernelconcepts (www.mucross.com)
Software GUI	Creating Fantastic Graphical User Interfaces with Embedded Wizard	This document gives information about GUI development & prototyping suite "Embedded Wizard". It is publicly available from Tara-Systems. (www.tarasystems.de)
Software GUI	Qt – cross platform application and UI framework	Homepage gives information, downloads for Qt (www.qt.nokia.com)
Software GUI	DirectFB is a thin library that provides hardware graphics acceleration. DirectFB adds graphical power to embedded systems and sets a new standard for graphics under Linux.	Homepage gives information, downloads for DirectFB (www.directfb.org)
Software GUI	GTK+ is a highly usable, feature rich toolkit for creating graphical user interfaces which boasts cross platform compatibility and an easy to use API.	Homepage gives information, downloads for GTK+ (www.gtk.org)
Software Linux	LINUX DEVICE DRIVERS by Author: Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman.	Book about writing device drivers for the Linux system. Third Edition Februar 2005, ISBN 978-0-596-00590-0, 636 Seiten (http://labs.kernelconcepts.de/Bookshelf/)
Software Management	Pro GIT Author: Scott Chacon	Book with information about GIT Server. (http://progit.org/) (http://labs.kernelconcepts.de/Bookshelf/)
Software Linux	LXR (formerly "the Linux Cross Referencer") is a software toolset for indexing and presenting source code repositories	Homepage with Linux Cross Reference (http://lxr.linux.no/+trees)
Linux	Linux-Kompendium	Online Source: http://de.wikibooks.org/wiki/Linux- Kompendium
Linux	Linux-Kompendium. Ubuntu / Arbeiten mit dem Terminal	Online Source: http://de.wikibooks.org/wiki/Linux- Kompendium:_Ubuntu/_Terminal
Linux	Running Linux under VMware Author: Bill Giannikos	Online Source: http://www.linwik.com/wiki /running+linux+under+vmware+workstation

Appendix E: CD file directory tree

Appendix F: Contact Information

GLYN GmbH & Co. KG Head Office

www.glyn.de sales@glyn.de

GLYN GmbH & Co. KG Office Nettetal

www.glyn.de nettetal@glyn.de

GLYN GmbH & Co. KG Office Norderstedt

www.glyn.de norderstedt@glyn.de

GLYN GmbH & Co. KG Office Pforzheim

www.glyn.de pforzheim@glyn.de

GLYN GmbH & Co. KG Office Unterhaching

www.glyn.de unterhaching@glyn.de

GLYN GmbH & Co. KG Office Zirndorf

www.glyn.de zirndorf@glyn.de

GLYN Austria

GLYN GmbH & Co. KG (Germany) www.glyn.at sales@glyn.at

GLYN Switzerland

GLYN GmbH & Co. KG (Germany) www.glyn.ch sales@glyn.ch

GLYN Benelux

GLYN GmbH & Co. KG (Germany) www.glyn.nl sales@glyn.nl

GLYN Poland

GLYN GmbH & Co. KG (Germany) www.glyn.pl sales@glyn.pl

GLYN Czech Republic

GLYN GmbH & Co. KG (Germany) www.glyn.cz sales@glyn.cz

GLYN Hungary

GLYN GmbH & Co. KG (Germany) www.glyn.hu sales@glyn.hu

GLYN Finland

GLYN GmbH & Co. KG (Germany) www.glyn.fi sales@glyn.fi

GLYN Sweden

GLYN GmbH & Co. KG (Germany) www.glyn.se sales@glyn.se

GLYN Denmark

GLYN GmbH & Co. KG (Germany) www.glyn-nordic.dk sales@glyn-nordic.dk

GLYN Norway

Link Electronics AS www.linknordic.com sales@linknordic.com

GLYN Bulgaria

Cooperations Partner Universal 98 Ltd. www.uni98-bg.com sales@uni98-bg.com

GLYN U.K.

Cooperations Partner First Byte Micro Ltd. U.K. Head Office www.firstbytemicro.com sales@firstbytemicro.com

GLYN Ltd. Australia

www.glyn.com.au sales@glyn.com.au

GLYN Ltd. New Zealand

www.glyn.co.nz sales@glyn.co.nz